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Abstract

Extending popular histogram representations of local motion patterns, we present a novel weighted integration method based on an
assumption that a motion importance should be changed by its appearance to obtain better recognition accuracies. The proposed
integration method of motion and appearance patterns can weight information involving “what is moving” by discriminant way. The
discriminant weights can be learned efficiently and naturally using two-dimensional fisher discriminant analysis (or, fisher weight
maps) of co-occurrence matrices. Original fisher weight maps lose shift invariance of histogram features, while the proposed
method preserves it. Experimental results on KTH human action dataset and UT-interaction dataset revealed the effectiveness of
the proposed integration compared to naive integration methods of independent motion and appearance features and also other
state-of-the-art methods.
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1. Introduction

Recognizing human actions from video sequences has a wide
range of applications such as automatic video searches, hu-
man interfaces and video surveillances. To recognize actions in
videos, a feature extraction process from spatio-temporal vol-
ume plays an important role. We assume that one requirement
of basic spatio-temporal features is “shift invariance,” i.e. the
same feature should be obtained even if the position of the ac-
tion is changed. Such shift invariance of spatio-temporal fea-
tures brings a simple action recognition framework that doesn’t
require segmentation by bounding boxes of person (Kobayashi
and Otsu, 2009). In this paper, we focus on the problems
that how we can improve discriminant abilities of base features
without losing the shift invariance.

Classical action recognition methods use template matchings
of spatial temporal templates. For example, Bobick and Davis
(2001) used motion-history image and motion-energy image as
temporal templates and matched by 7 Hu moments of temporal
templates. Efros et al. (2003) matched spatio-temporal volume
centered on a person by the optical flow vectors. Rodriguez
et al. (2008) used MACH filter to create a template of a given
action class. Methods in this category should perform segmen-
tation of person regions or match template in several positions
in videos, expect for the method of (Bobick and Davis, 2001)
that uses shift invariant features.

In recent years, recognition approaches using global repre-
sentations of local motion patterns have shown impressive per-
formances in action recognitions (Cinbis and Sclaroff, 2010;
Dollar et al., 2005; Kobayashi and Otsu, 2009; Ryoo et al.,
2009; Liu et al., 2009; Schuldt et al., 2004; Scovanner et al.,
2007; Yeffet and Wolf, 2009). In these methods, once the points
to calculate feature are determined, local regions (cuboids)

around the points are assigned to patterns. Then a histogram
of local patterns is created as a global feature representation for
recognition. If the histogram is created without dividing regions
of video sequences, these feature representation have shift in-
variance.

By the creating process of local patterns, the approaches
are categorized into two classes; cluster centers of local fea-
tures (Dollar et al., 2005; Scovanner et al., 2007) or predeter-
mined patterns (Kobayashi and Otsu, 2009; Yeffet and Wolf,
2009). The use of cluster center was inspired from the bag-
of-visualwords method of image classification(Csurka et al.,
2004). The later class, predetermined mask pattern is exten-
sions of mask pattern features (e.g., HLAC(Otsu and Kurita,
1988) or LBP(Ojala et al., 1996)) to spatio-temporal features.
The merit of this predetermined mask pattern is simple and
practical because one doesn’t require the learning process of
codebook.

By the information of local regions, the patterns also
can be roughly classified into two classes; motion features
(e.g, HOF(Wang et al., 2009), 3DSIFT(Scovanner et al.,
2007)) and appearance features (e.g, SIFT(Dollar et al., 2005),
SURF(Wang et al., 2009)). Among the motion features, there
are features calculated directly on three-dimensional (image
plane + time) volume (Scovanner et al., 2007; Kobayashi and
Otsu, 2009). However, the resolution of image and time may
differ and the information about image and motion is less
than independent features. Although action recognitions using
only appearance or motion information is possible (Schindler
and Gool, 2008; Kobayashi and Otsu, 2009), the combination
of motion and appearance information produces more reliable
recognition than using one type of features. The most com-
monly used approach is the weighted concatenation of inde-



pendent feature values of global representations (Cinbis and
Sclaroff, 2010; Schindler and Gool, 2008; Liu et al., 2009). The
effectiveness of these feature combination is thought as true in
both the cases that back ground information is crucial cue (Cin-
bis and Sclaroff, 2010; Liu et al., 2009) and even when recog-
nizing different actions in the same background(Schindler and
Gool, 2008).

In this paper, we present a novel discriminant approach to
combine local motion and appearance features based on an as-
sumption that motion importance should be changed by its ap-
pearance. Consider a problem to classify “boxing” and “walk-
ing”, boxing is more related to the hand movement and walking
is more related to leg movements. Thus we believe changing
importance based on its parts is effective for recognition. How-
ever, explicit object information, such as hand or head, requires
human labors for labeling. Instead of using such explicit object
information, our approach determines the discriminant impor-
tance by an automatic learning from only action label and data.
More specifically, the weighing is realized by two-dimensional
linear discriminant analysis (2DLDA) (Liu et al., 1993) of co-
occurrence matrices of motion and appearance patterns. Be-
cause the discriminant weighting is realized based on appear-
ance, the shift invariance of the original features is preserved.

Our proposed approach is inspired by two previous ap-
proaches of image classification. The feature weighting based
on appearance is inspired from Top-Down Color Attention
(Khan et al., 2009) in which shape descriptor is weighted by
color descriptor in the same region. In their research, the fea-
ture weighting is realized by plausibility of classes, not dis-
criminant way. The discriminative weighting is inspired from
Fisher Weight Maps (FWM) approaches(Shinohara and Otsu,
2004). FWM is the discriminat weighting of histogram features
by its image position. Recently, FWM was applied to region
weightings of local image descriptors(Harada et al., 2010), but
weighting by image position loses shift invariance of the his-
togram features. Although it was not mentioned in previous re-
searches, the formulation of FWM is the same as 2DLDA(Liu
et al., 1993). There are several variants of 2DLDA. One such
variant, a tensor extension is used for gait recognition using
gabor filter(Tao et.al., 2007). However, this method does not
have shift invariance. Our technical contribution is to extend
FWM to shift invariant version by extending coordinate po-
sition weighting to appearance weighting. Further, we show
bi-directional weighting and increasing number of weights can
produce better recognition accuracies, these are not explicitly
shown in the previous researches in FWM (Shinohara and Otsu,
2004), (Harada et al., 2010).

2. Related Studies

There has been a large amount of successes by bag-of-
features like approaches in action recognition. Here we de-
scribe differences to other researches for clarification.

0This technical report is the extended version of Matsukawa et al. (2011).
The extension includes additional survey and experimental results.

Recently, the methods that use co-occurrence of motion fea-
ture became popular (Gilbert et al., 2009; Ryoo et al., 2009).
These methods used co-occurrence of single type of feature in
different points, that requires large combinations of relative po-
sition of features. While the complexity of the proposed method
is simple; the co-occurrence of different features on the same
position. The most recently, Cinbis and Sclaroff (2010) pro-
posed person and object centric motion features. They distin-
guished motion features by objects. In this point, this is similar
concept to us. However, they relies on the person detector or
object detector by tracking, that increase computational costs.
Compared to their method, the proposed method is simpler and
thus more computationally efficient.

Another difference to previous methods is the method for dis-
criminant weighting. Popular ways to weight discriminant fea-
tures are AdaBoost(Liu et al., 2009) or Multiple Kernel Learn-
ing (MKL)(Cinbis and Sclaroff, 2010). Liu et al. (2009) used
AdaBoost to select combination of static and motion features.
Cinbis and Sclaroff (2010) used MKL to learn weights of fea-
ture channels. However, AdaBoost requires several rounds to
train classifier with weighted samples, and MKL is based on
kernel method. Thus, both MKL and AdaBoost require large
computational times for training. Proposed weighting method
in this paper is based on eigen problems of discriminant analy-
sis, thus can be learned quite fast.

3. Base Features

In this section, we explain the base motion and appearance
features that are used in the proposed method. We use Cu-
bic Higher-order Local Auto-Correlation(CHLAC) (Kobayashi
and Otsu, 2009) as motion patterns and Higher-order Local
Auto-Correlation (HLAC) (Otsu and Kurita, 1988) as appear-
ance patterns. Originally, these are both global histogram rep-
resentations of auto-correlation patterns of local regions. These
features can be calculated fast, yet produce good classifica-
tion accuracies. Several successes of HLAC/CHAC in action
recognition are found in (Kobayashi and Otsu, 2009; Kurita
and Hayamizu, 1988; Matsukawa et al., 2010). These are both
primitive features, thus the use of these features is suitable for
the investigation of our method essentially. However, the pro-
posed integration method is general and thus we believe it can
be applied to any other local patterns e.g., k-means clustering of
3D-SIFT (Scovanner et al., 2007) and 2D-SIFT (Dollar et al.,
2005). Nevertheless, pre-determined motion patterns such as
CHLAC/HLAC are more practical because one doesn’t require
the learning process of codebook per dataset.

At first, the video sequences are converted to binary se-
quences in which each point indicates a moved point or a static
point (Fig. 1). We threshold the sum of squared distance (SSD)
of the 3×3 pixels of successive frames on the same point to
obtain binary sequences. If the camera is static1, such binary
sequences represent silhouettes of moving regions. Let f(r)

1We assume camera is static to focus on the effect of proposed weighted
integration. If camera is moving, a compensation method of camera motion is
required to extract only moving regions of human.
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Figure 1: Preprocessing for HLAC and CHLAC. Left; original image se-
quences, Right: binarization of frame difference.

Figure 2: Combination of appearance and motion patterns.

∈ {0, 1} be the binary video data defined on D : X × Y × T with
r= (x, y, t)t, where X and Y are width and height of the image
frame and T is the time length of the sequences. Here f(r) = 1
means a moved point and f(r) = 0 means a static point.

We calculate local features on all points that satisfy {r| f (r) =
1} by following auto-correlation functions of HLAC (Otsu and
Kurita, 1988) and CHLAC (Kobayashi and Otsu, 2009). The
auto-correlation function of HLAC is defined by,

v(r) = f (r) f (r + a1) · · · f (r + aN), (1)

where an= (anx, any, 0)t, n = 1, ...,N are displacement vec-
tors in an image plane. These parameters are restricted to
anx, any ∈ {±∆r, 0} and N ∈ {0, 1, 2}. The auto-correlation func-
tion v(r) corresponding to one configuration of (a1, ..., aN) is
one dimension of HLAC.

The auto-correlation function of CHLAC, the natural exten-
sion of HLAC, is defined by,

h(r) = f (r) f (r + a′1) · · · f (r + a′N), (2)

where a′n= (anx, any, ant)t, n = 1, ...,N are displacement vectors
in image planes and time. These parameters are restricted to
anx, any ∈ {±∆r, 0}, ant ∈ {±∆t, 0} and N ∈ {0, 1, 2}. As in
HLAC, h(r) corresponding to one configuration of (a′1, ..., a

′
N)

is one dimension of CHLAC.
Note that CHLAC also contains image plane patterns. How-

ever, the information about the image plane of CHLAC is less
than that of HLAC. Thus, the combination of CHLAC and
HLAC has more detailed information about the image plane
(Fig. 2).

4. Weighted Integration Method

In this section, we explain the proposed weighted integration
of motion and appearance features. The outline of the proposed
method is described in subsection 4.1. Subsection 4.2 describes

how to learn the appearance weights. In subsection 4.3, we
learn motion weights to increase classification accuracies fur-
ther.

4.1. Weighted integration of co-occurrence matrix

At first, we extract motion patterns and appearance patterns
in the same position. Let V(r) = (v1(r), ..., vd1 (r))t be responses
of d1 appearance patterns and H(r) = (h1(r), ..., hd2 (r))t be re-
sponses of d2 motion patterns of the reference point r. Then, we
combine the V(r) and H(r) in following co-occurrence matrix,

X(r) = V(r)H(r)T , (3)

where X(r) is a d1 × d2 matrix, its (i, j) component has product
value of vi(r) and h j(r). We integrate the X(r) in spatio-tempral
volume D. i.e.,

X =
∑
r∈D

X(r). (4)

The integral volume D could be a subregion of video sequences.
However, to obtain shift invariant features (in both position
of space and time), we set D to all regions of one video se-
quences. Then we create a d2 dimensional feature vector y,
using a weight coefficient vector α = (α1, ..., αd1 )t and X as
following equations.

y = XTα. (5)

This can be rewritten as,

y =
∑
r∈D

X(r)Tα =
∑
r∈D

H(r)V(r)Tα

=
∑
r∈D

w(V(r))H(r). (6)

where w(V(r)) = V(r)Tα is a scalar and we call this value as
an appearance weight. Eq.(6) means the responses of motion
patterns are integrated using the weight based on the appearance
of the point. Thus, one can weight the each motion feature on r
without losing shift invariance unlike the position weight w(r)
of FWM (Shinohara and Otsu, 2004).

4.2. Appearance weight learning with 2DLDA

Next, we explain how to determine the weight coefficient
vector α. From the discussion of previous subsection, one can
understand if we determine α so that maximize discriminant
ability of XTα, then we can get appearance weight w(V(r))
which improve discriminant power of y. To learn the weight
coefficient vector α, we use two-dimensional discriminant anal-
ysis (Liu et al., 1993; Shinohara and Otsu, 2004; Yan et al.,
2007)2, which is proposed to solve this type problemes. The
2DLDA is the extended version of linear discriminant analysis
(LDA) so that can apply to matrix without vectorize the data.

2The 2DLDA method is firsty proposed in (Liu et al., 1993). There are
several variations of 2DLDA. Among them, our formulation is the same as
(Shinohara and Otsu, 2004). See references, e.g. introduction of (Yan et al.,
2007) for more information about 2DLDA.
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This can gives same weight to each column (in our case, appear-
ance patterns) of matrix. The 2DLDA shows better recognition
abilities when the high dimensional and small sample problems.
The co-occurrence matrix is high dimensional, thus we believe
these weightings are suitable for co-occurrence feature.

Suppose there are M co-occurrence matrices {Xi}, i =
1, ...,M for training. We define the generalized within class
covariance matrix SW ∈ Rd1×d1 and between class covariance
matrix SB ∈ Rd1×d1 as following equations,

SW =
1
M

C∑
j=1

∑
i∈c j

(Xi − X j)(Xi − X j)T , (7)

SB =
1
M

C∑
j=1

M j(X j − X)(X j − X)T . (8)

where M j is the number of the samples in class c j, C is the num-
ber of classes, X j =

1
M j

∑
i∈c j

Xi is the mean of Xi in the class c j,

X = 1
M
∑M

i Xi is the mean of the all training samples. Then, the
extended fisher discriminant criterion to two-dimensional data
is defined by,

J(α) =
αT SBα

αT SWα
. (9)

The largest s weight coefficients α1, ...,αs, that maximize this
criterion under the condition αT SWα = 1 is obtained as the
largest s eigen vectors of following generalized eigen problem.

SBα = λSWα. (10)

To solve this generalized eigen problem, we transformed
e.q.(10) to an ordinary eigen problem by applying eigenvec-
tor decomposition of SW as described in (He et al., 2002). We
form a d2×s dimensional feature vector for classification by
unfolding Y = XT A, where A = [α1, ...,αs] ∈ Rd1×s. From
e.q.(3) and (4), one can see Y is a concatenation of s weighted
motion features as, Y=

∑
r∈D X(r)T A =

∑
r∈D H(r)V(r)T A =∑

r∈D H(r)[w1(V(r)), ...,ws(V(r))].
Note that s can be taken larger dimension than C-1 dimension

unlike standard LDA. Previous FWM papers did not noticed
this merit but actually it is easily confirmed that e.q.(10) is the
standared LDA formulation that the class number becomes C×d
(Yan et al., 2007). Another advantage of 2DLDA against stan-
dard LDA is the ability to handle large dimensional features in
more natural way. If we weight each element of X ∈ Rd1×d2 with
LDA by vectorizing X, the weight coefficient dimension be-
comes d1×d2. For calculation of weight coefficients, d1d2×d1d2
dimensional within/between class covariance matrices are re-
quired. When d1 or d2 is large (e.g, d1 = 300,d2 = 200), LDA
suffers from the memory lack or small sample problem. Thus
un-natural process such as division of feature vector is required.
2DLDA can naturally learn weight coefficients without diving
feature vector because the size of within/between covariance
matrix is d1 × d1.

4.3. Bi-linear weight of motion and appearance
The learned weights from previous subsections are only with

regard to appearance patterns. However, like CHLAC was com-
pressed by LDA (Kobayashi and Otsu, 2009), weighting against

Figure 3: Bi-linear weighted integral of local motion and appearance.

motion patterns could improve the classification abilities. Thus,
better classification performances can be obtained by weighting
the motion patterns in X not only the appearance patterns. This
is also naturally realized with 2DLDA by applying the 2DLDA
to two-directional of the matrix as to firstly proposed in (Yang et
al., 2005). Although the iterate algorithm of this weighting was
proposed (Ye et al., 2004), our method is non-iterate algorithm
as in (Yang et al., 2005) for simplicity.

First, we weight the matrix using motion weight coefficient
vector β = (β1, ..., βd2 )t as follows,

X′ = (XT )T B = XB, (11)

where B = [β1,β2, ..,βl] ∈ Rd2×l. The learning method of the
β is the same as the previous subsection. Namely, we calculate
the generalized within class covariance matrix S′W ∈ Rd2×d2 and
between class covariance matrix S′B ∈ Rd2×d2 with regard to XT

by replacing the X of e.q. (7) and (8) to XT . Then the l weight
coefficient vectors β1, ...,βl are obtained as the largest l eigen
vectors of following generalized eigen problem.

S′Bβ = λS
′
Wβ. (12)

Next, we apply the weight learning method with regard to X′ ∈
Rd1×l and get a weight coefficient matrix A′ = [α′1, ...,α′ s] ∈
Rd1×s. Finally, we get the following bi-linear weighted feature,

Y′ = (X′)T A′ = BT XT A′. (13)

We form a l × s dimensional feature vector for classification
by unfolding Y′∈ Rl×s. From e.q.(3) and (4), one can see
Y′ as Y′=

∑
r∈D BT X(r)T A′ =

∑
r∈D BT H(r)V(r)T A′ =∑

r∈D[u1(H(r)), ..., ul(H(r))]T [w1(V(r)), ...,ws(V(r))], where
u(H(r)) = βt H(r) is a value of weighted motion feature. Thus,
the (i, j) element of Y′ is corresponding to following weighted
integral feature, y′i, j =

∑
r w j(V(r))ui(H(r)). This means

the weighted motion feature ui(H(r)) is integrated with the
appearance weight w j(V(r)). This process is clearly shown in
Fig.3.
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5. Experiment

We evaluated the proposed feature integration method us-
ing KTH human action dataset (Schuldt et al., 2004) and UT-
interaction dataset (Ryoo and Aggarwal, 2010). KTH dataset
contains six classes of actions performed by 25 subjects in four
different scenarios. Following previous researches(Ryoo et al.,
2009; Liu et al., 2009; Matsukawa et al., 2010), we carried out
a leave-one-out cross validation evaluation, i.e. for each run
the weights and classifiers were trained using the videos of 24
subjects and remaining subjects were used for test samples. UT-
interaction dataset contains six classes of human-human inter-
actions. Some challenging factors of this dataset include mov-
ing background, cluttered scenes, camera jitters/zooms and dif-
ferent clothes. This dataset is divided to 2 sets by the places
where the actions were performed. Each set has 10 sequences
per category. Following the dataset protocol(Ryoo and Aggar-
wal, 2010), we performed 10-fold leave-one-out cross valida-
tion per set. , i.e., for each set, we leave one among 10 se-
quences for the testing and use the other 9 for the training. We
used segmented sequences of this dataset. Because the training
samples of UT-interaction set is small, we increase the num-
ber of training samples twice by adding the horizontally flipped
versions of original training sequences.

For classification, a linear SVM was used by one-against-all.
A five-fold cross validation was carried out on training set to
tune the parameters of SVM. Because the number of training
samples of UT dataset is small, we used K-NN classifier with
k = 5 for this dataset.

5.1. Detailed setup of base features

Here we describe the detailed parameter of CHLAC and
HLAC we will report.

We didn’t remove duplicate configurations caused by shift of
reference points (Otsu and Kurita, 1988). Because after com-
bining CHLAC and HLAC, such duplicate configurations be-
come independent. Then by using complete combination of a
up to N= 2, the number of configuration patterns of HLAC
becomes 37. To obtain richer information in image plane,
we concatenate these HLAC patterns calculated by 5 scales
(∆r = 1, 2, 4, 8, 12). The effectiveness of such multi-resolution
of mask patterns is reported in (Toyoda and Hasegawa, 2007).
The value of N = 0 (v(r) = f(r)) are common in 5 scales. There-
fore we get responses of (36×5 + 1) = 181 dimensional appear-
ance patterns from a position r, i.e. d1 = 181 , As in HLAC,
we didn’t ignore duplicate mask patterns of CHLAC. Then,
there are 352 configurations of (a′1, ..., a

′
N). The time interval

of CHLAC is set to ∆t = 1, and spatial interval of CHLAC is
one of the ∆r = {1, 2, 4, 8}, i.e. d2 = 352.

5.2. Results

5.2.1. Recognition rates
First, we compared the proposed method to naive inte-

gration methods of CHLAC and HLAC. Experimental re-
sults are shown in Table 1-3. In the table, ∆r means the
parameter of CHLAC, while parameter of HLAC was fixed

as described in previous subsection. The results ∆r =

(1, 2, 4, 8) means the concatenated feature by weighting re-
sults of each parameters. The symbol + means the con-
catenated features of two independent feature vectors. As
the dimension of LDA (Linear Discriminant Analysis), we
used 5 (C-1) dimensions. The Weighted 2DLDA means the
method of Sec.4.2. The results show better performances
than LDA(CHLAC+HLAC) and LDA(CHLAC)+LDA(HLAC)
could be achieved by Weighted 2DLDA in many cases of KTH
and some cases of UT. The result of Bi-Weighted 2DLDA
means when the both direction of co-occurrence matrix is
weighted (the method of Sec.4.3). Bi-Weighted 2DLDA out-
performs the Weighted 2DLDA and other integration methods.
Furthermore, it is observed that the performances increase as
to increase the number of weights by comparing different num-
ber of weights in Bi-Weighted. The classification accuracies
by varying the number of weighs of Bi-Weighted 2DLDA are
shown in Fig. 4. In most cases, it is observed that the higher
performances can be obtained when the number of weights are
higher than 5, i.e. C − 1, in both s and l. The 2DLDA can
take larger dimension than C − 1 while the dimension of LDA
is limited up to C − 1. This is one of the merits of weightings
by 2DLDA. However, too many weights especially in UT-Set2
led to reduce the accuracies. This may be because the number
of training sample for classification was small.

In Table 1-3, the result of Weighted 2DPCA and Bi-
Weighted 2DPCA mean the results by using weighting two-
dimensional principal component analysis (Yang, et al., 2004)
instead of weighting by 2DLDA. The 2DPCA is the unsuper-
vised algorithm and thus the weighting is not discriminative. It
is observed that the weighting by 2DLDA is better than weight-
ing by 2DPCA in most cases, this shows the effectiveness of
discriminant weightings than non discriminant weightings.

5.2.2. Learned weights
Next, we show the examples of learned weights by the pro-

posed method in Fig. 5 - 6. These appearance weights are cal-
culated from X′. The color shows the sign the weights; red(+)
and blue(-), but one can reverse the sign of weight coefficients α
as −α because J(α) = J(−α), so only the difference of the sign
is meaningful. The sign of the weights become different in each
weights corresponding to different eigen vectors. Although the
meaning of the weights are less understandable, it is shown that
the weighed motion features by different appearance weights
could be obtained. In third weights of KTH and first weights of
UT, the same sign of the appearance weights are learned. This
is because the discriminant learning of the motion weight was
sufficient to determine the sign of appearance weight. However,
the absolute values of each position are different. In summary,
the appearance weights have some varieties. We believe these
varieties could help recognition.

5.2.3. Comparison to other methods
Finally, we compared the accuracy of the proposed method

to other state-of-the art methods in KTH. The best result of
the proposed weighted integration method is 94.54 % as shown
in Table 1. This result is much higher than early papers (e.g,
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Table 1: Recognition accuracy (%) of different integration methods.
Method Dim. ∆ r = 1 ∆ r = 2 ∆ r = 4 ∆ r = 8 ∆ r = (1,2,4,8)

Bi-Weighted 2DLDA 50×50 92.40 90.70 94.54 90.79 93.38
Bi-Weighted 2DLDA 50×5 90.19 90.07 88.06 90.58 91.99
Bi-Weighted 2DPCA 50×50 92.28 92.58 92.67 91.90 92.54
Bi-Weighted 2DPCA 50×5 87.33 87.63 88.46 86.23 89.76

Weighted 2DLDA 352×5 88.58 90.17 90.02 89.78 91.23
Weighted 2DPCA 352×5 82,11 87.96 90.22 87.70 90.09

LDA(CHLAC+HLAC) 5 88.24 90.25 89.74 89.41 90.49
LDA(CHAC)+LDA(HLAC) 5+5 86.61 89.82 88.65 89.03 91.37

LDA(CHLAC) 5 85.32 88.32 87.70 88.39 88.95
LDA(HLAC) 5 79.38 79.38 79.38 79.38 79.38

CHLAC+HLAC 352+181 79.39 83.22 87.70 88.39 88.95
CHLAC 352 72.34 81.78 87.56 87.97 88.49
HLAC 181 73.61 73.61 73.61 73.61 73.61

Table 2: Recognition accuracy (%) of different integration methods UT-Set1.
Method Dim. ∆ r = 1 ∆ r = 2 ∆ r = 4 ∆ r = 8 ∆ r = (1,2,4,8)

Bi-Weighted 2DLDA 50×20 73.33 76.66 76.66 73.33 63.33
Bi-Weighted 2DLDA 50×5 78.33 73.33 71.66 63.33 58.33
Bi-Weighted 2DPCA 50×20 36.66 36.66 38.33 38.33 36.66
Bi-Weighted 2DPCA 50×5 36.66 35.00 33.33 45.00 36.66

Weighted 2DLDA 352×5 51.66 55.00 56.66 58.33 58.33
Weighted 2DPCA 352×5 36.66 36.66 40.00 40.00 35.00

LDA(CHLAC+HLAC) 5 58.33 58.33 60.00 61.66 58.33
LDA(CHAC)+LDA(HLAC) 5+5 61.66 61.66 58.33 56.66 55.33

LDA(CHLAC) 5 56.66 65.00 60.00 51.66 53.33
LDA(HLAC) 5 61.66 61.66 61.66 61,66 61.66

CHLAC+HLAC 352+181 36.66 35.00 36.66 38.33 33.33
CHLAC 352 41.66 41.66 40.00 38.33 38.33
HLAC 181 38.33 38.33 38.33 38.33 38.33

Table 3: Recognition accuracy (%) of different integration methods UT-Set2.
Method Dim. ∆ r = 1 ∆ r = 2 ∆ r = 4 ∆ r = 8 ∆ r = (1,2,4,8)

Bi-Weighted 2DLDA 50×20 60.00 75.00 71.66 65.00 66.66
Bi-Weighted 2DLDA 50×5 61.66 81.66 66.66 61.66 73.33
Bi-Weighted 2DPCA 50×20 46.66 48.33 51.66 43.33 51.66
Bi-Weighted 2DPCA 50×5 48.33 46.66 51.66 41.66 51.66

Weighted 2DLDA 352×5 73.33 66.66 63.33 53.33 68.33
Weighted 2DPCA 352×5 46.66 48.33 48.33 43.33 51.00

LDA(CHLAC+HLAC) 5 71.66 73.33 70.00 61.66 73.33
LDA(CHAC)+LDA(HLAC) 5+5 63.33 63.33 56.66 63.33 68.33

LDA(CHLAC) 5 50.00 46.66 45.00 60.00 63.33
LDA(HLAC) 5 65.500 65.00 65.00 65.00 65.00

CHLAC+HLAC 352+181 53.33 51.66 51.66 53.33 45.00
CHLAC 352 40.00 40.00 41.66 35.00 45.00
HLAC 181 55.00 55.00 55.00 55.00 55.00

Figure 4: Results of different number of bi-linear weights (the spatial parameter of CHLAC is ∆r = 4).
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Figure 5: Examples of appearance weights w(V(r)) of X′ (KTH). a: original
images, b: binarization of frame differencing, w1-3 : the weights corresponding
to 1st-3rd eigen vectors.

Neible and FeiFei (2008) 83.33%). Although the better results
than the proposed method is also reported (e.g, Gilbert et al.
(2009)), these methods use the learning of local patterns (i.e.,
codebook). Nevertheless of using predetermined patterns, our
result is better than several codebook based approaches; the co-
occurrence of single feature (Ryoo et al. (2009) 93.8%) and
motion and static features (Liu et al. (2009) 93.8%). As prede-
termined pattern based methods, there are LTP(Yeffet and Wolf,
2009) and MICHLAC (Matsukawa et al. (2010) 93.85%). Be-
cause the recognition protocol of paper in (Yeffet and Wolf,
2009) is different from us, we implemented LTP and classi-
fied with the same settings to us. The recognition rates of LTP
were 89.41% (without partitioning spatial temporal grid as in
us), and 94.66% (with best spatial temporal grid as in (Yef-
fet and Wolf, 2009)). Thus, the proposed weighted integra-
tion of CHLAC and HLAC achieved the best result among the
predetermined features, which is computationally faster than
codebook based approach. The weight learning of the pro-
posed method is also fast, once co-occurrence matrix X are ex-
tracted, the weights could be learned within 1.5 minutes per
each training set with a standard workstation. With one core
of Xeon 2.66GHz CPU and c++ implementation, it took only
67.05sec(B)+8.12sec(A′) for KTH, 5.3sec(B)+0.66sec(A′) for
UT.

6. Conclusion

We have proposed a feature integration method of appear-
ance and motion patterns by using two-dimensional fisher dis-
criminant analysis. The proposed method could learn discrim-
inant weights efficiently and naturally from co-occurrence ma-
trices of base features. In addition, the discriminant abilities of
base features can be increased without losing the shift invari-
ance of histogram features. Experimental results showed the

Figure 6: Examples of apperance weights w(V(r)) of X′ (UT). a: original im-
ages, b: binarization of frame differencing, w1,3,5 : the weights corresponding
to 1st,3rd,5th eigen vectors.

classification accuracies of the proposed integration were 5.76
% (in KTH), 15.00 % (in UT-set1), and 1.66% (in UT-set2) bet-
ter than the native integration methods (LDA of base features).

There are some possible extensions of the proposed integra-
tion for future work. One is to learn sparse weight coefficients
for more understandable appearance weights. Another possible
extension is to learn weights of frame importance as another
type of appearance weights.
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