Illumination Normalization of Face Images with Cast Shadows

Tetsu Matsukawa Takahiro Okabe Yoichi Sato Institute of Industrial Science, The University of Tokyo

Background

Illumination normalization for face recognition

- Shadings are low-frequency components of images, i.e., largescale features
- Most of methods (e.g, SQI, DCT, TT, LTV) are based on highfrequency components of images, i.e., *small-scale features*
- Recently, it is reported that the method based on both smalland normalized large-scale features works better [Xie et al., 2011]

Difficulty of cast shadows

- In the presence of cast shadows, Illumination can not be approximated by low dimensional subspace Occluder can be arbitrary
- Existing methods using illumination subspace (e.g. Non-Point Light Quotient Image [Wang et al. 2004] used in normalization of large-scale features in [Xie et al. 2011]) fail to normalize images with cast shadows

Shadow Insensitive Illumination Normalization

Quotient Image with Error Term

· Remove diffuse lighting on non point light source and error components including cast shadows from large-scale features.

Pixel-wise error basis: handle arbitrary shape of error

Fitting Basis Functions

Frror term is not constrained to negative: also remove errors other than cast shadows (e.g., specular high lights, and fitting artifacts)

Experimental Results

Example

Datasets

- Extended Yale B: 38subjects, 64 lighting conditions
- Multi-PIE: 337 subjects, 21 lighting conditions CAS-PEAL: 1040 subjects, lighting probe set and
- hat images from accessory set CAST: 14 subjects, 50 conditions with occluders

Setup

- One image of frontal lighting is registered as a reference image
- Recognition using nearest neighbor classifier based on normalized cross correlation

Results in different settings of \mathcal{E}

Recognition rates of various datasets

Method	Extended YaleB	Multi- PIE	CAS PEAL		CACT
			Light	Hat	CASI
HE	55.87	57.92	4.37	25.00	18.43
TT [XTan et al. 2010]	86.67	99.46	18.28	24.73	76.00
DCT [Chen et al. 2006]	90.15	99.15	19.66	27.68	81.00
NDF [Chen et al. 2011]	90.57	99.85	21.89	32.50	79.71
LTV [Chen et al. 2006]	90.34	98.80	21.58	30.54	82.29
NPL-QI [Wang et al. 2004]	83.69	97.69	23.23	19.46	37.61
NPLE-QI [Proposed]	93.74	99.69	22.60	27.68	67.43
S&L(DCT) [Xie et al, 2011]	92.26	98.85	21.98	32.05	82.86
S&L(NPL-QI) [Xie et al, 2011]	90.83	98.62	27.06	21.07	49.71
S&L(NPLE-QI) [Proposed]	94.71	99.31	26.62	33.04	84.57

Normalization using Small- and Large-**Scale Features**

Decomposition

 $I = \rho S$ Logarithmic transform reflectance ρ shading S

 $\log(I) = v + u$

small-scale feature $v = \log(\rho)$ large-scale feature $u = \log(S)$

This decomposition is obtained by Logarithmic Total Variation (LTV) [T.Chen et al. 2006]

Algorithm Normalization of large-scale feature Input: Large-scale feature u. $\hat{l} = \operatorname{argmin} |u - Al|_2.$ if $|u - A\hat{l}|_2 > \epsilon |u|_2$ then $\hat{w} = \arg\min|w|_1$ s. t. $|u - Cw|_2 \le \epsilon |u|_2$. $u' = u - C\hat{w}.$ else $u' = u - A\hat{l}.$ end if

Output: Normalized large-scale feature u'.

Example Results

Summary

- We extend quotient image based illumination normalization taking into account for errors including cast shadows
- Favorable results were obtained

