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Illumination normalization for face recognition
• Shadings are low-frequency components of images, i.e., largelargelargelarge----

scale featuresscale featuresscale featuresscale features
• Most of methods (e.g, SQI, DCT, TT, LTV) are based on high-

frequency components of images, i.e., smallsmallsmallsmall----scale features scale features scale features scale features 
• Recently, it is reported that the method based on both smallbased on both smallbased on both smallbased on both small----

and normalized largeand normalized largeand normalized largeand normalized large----scale featuresscale featuresscale featuresscale features works better [Xie et al., 2011]

Decomposition

• This decomposition is obtained by  Logarithmic Total Variation 
(LTV) [T.Chen et al. 2006]

Example 

Datasets
- Extended Yale B: 38subjects, 64 lighting conditions

- Multi-PIE: 337 subjects, 21 lighting conditions
- CAS-PEAL: 1040 subjects, lighting probe set and 

hat images from accessory set
- CAST: 14 subjects, 50 conditions with occluders

Setup
- One image of frontal lighting is registered as a reference 

image
- Recognition using nearest neighbor classifier based on 

normalized cross correlation

Difficulty of cast shadows
• In the presence of cast shadows, Illumination can not be 

approximated by low dimensional subspace
• Occluder can be arbitrary

occluder

Illumination Normalization of 
Face Images with Cast Shadows

Tetsu Matsukawa Takahiro Okabe Yoichi Sato
Institute of Industrial Science, The University of Tokyo

+

illumination error 

- =

error basis

・・・
illumination basis

・・・
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• Remove diffuse lighting on non point light source and error error error error 
components including cast shadows from large-scale features. 
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Error term is not constrained to negative： also remove errors other 
than cast shadows (e.g., specular high lights, and fitting artifacts)

ε

L1L1L1L1----norm minimizationnorm minimizationnorm minimizationnorm minimization [Wright et al. 2009]

• Fit with minimum usage of error term

Recognition rates of various datasets

Parameter of tolerance error

Example Results

Results in different settings of 
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Quotient Image with Error Term
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Decomposition

Shadow Insensitive Illumination Normalization 
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• Existing methods using illumination subspace (e.g. Non-Point Light 

Quotient Image [Wang et al. 2004]  used in normalization of large-scale features 

in [Xie et al. 2011]) fail to normalize images with cast shadows
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[[[[XieXieXieXie et al. 2011]et al. 2011]et al. 2011]et al. 2011] (without error term)

[Proposed]  [Proposed]  [Proposed]  [Proposed]  (with error term)

Summary
- We extend quotient image based illumination 

normalization taking into account for errors 
including cast shadows

- Favorable results were obtained 

[Proposed]

[Xie et al. 2011]
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from [Xie et al. 2011]

Pixel-wise error basis： handle arbitrary shape of error


