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a b s t r a c t

This paper presents a novel image representation method for generic object recognition by using

higher-order local autocorrelations on posterior probability images. The proposed method is an

extension of the bag-of-features approach to posterior probability images. The standard bag-of-features

approach is approximately thought of as a method that classifies an image to a category whose sum of

posterior probabilities on a posterior probability image is maximum. However, by using local auto-

correlations of posterior probability images, the proposed method extracts richer information than the

standard bag-of-features. Experimental results reveal that the proposed method exhibits higher

classification performances than the standard bag-of-features method.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Generic object recognition technologies have many possible
applications such as automatic image search. However, generic
object recognition involves some very difficult problems, because
one has to deal with inherent object/scene variations as well as
difficulties in viewpoint, lighting, and occlusion. Thus, although
many methods of generic object recognition have been developed
so far, the classification performance of these conventional
methods are still insufficient, and a method that can achieve high
classification accuracy is strongly desired.

The bag-of-features approach is the most popular approach for
generic object recognition [1] because of its simplicity and
effectiveness. This approach is originally inspired from the text
recognition method called ‘‘bag-of-words,’’ and this method treats
an image as an orderless collection of quantized appearance
descriptors extracted from local patches. The main steps of the
bag-of-features are (1) detection and description of image
patches, (2) assigning patch descriptors to a set of predetermined
codebooks with a vector quantization algorithm, (3) constructing
a bag-of-features, which counts the number of patches assigned
to each codebook, and (4) applying a classifier by treating the
bag-of-features as the features vector and thus determining the
category which an image can be assigned.
ll rights reserved.
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It is known that the bag-of-features method is robust with
regard to background clutter, pose changes, and intraclass varia-
tions and offers good classification accuracy. For example, the
evaluation using several local features and kernel classifiers
across several object datasets showed the effectiveness of the
bag-of-features method under challenging real-world condi-
tions [2]. However, several problems still exist with regard to its
application to image representation. To solve these problems,
many methods have been proposed. These methods include
spatial pyramid partitioning that utilizes location information
[3], higher-level codebook creation based on local co-occurrence
of codebooks [4–6], improvement of codebook creation [7–10],
and image matching based on the region of interest [11]. All these
methods are based on the histogram of local appearance, and
information pertaining to semantic class labels is not used for
feature representation.

In this paper, we present a novel method that improves upon
the bag-of-features method. The main feature of the proposed
method is that it utilizes posterior probability images for semantic
feature extraction. The standard bag-of-features method is
approximately thought of as a method that classifies an image to
a category whose sum of posterior probabilities on a posterior
probability image is maximum. This method does not utilize local
co-occurrence of posterior probability images. We applied higher-
order local autocorrelations [12] on posterior probability images,
so as to extract richer information regarding these images. We call
this image representation method as ‘‘probability higher-order
local autocorrelations (PHLAC).’’ PHLAC has certain desirable prop-
erties for image recognition, namely, shift invariance, additivity,
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and synonymy [13] invariance. Furthermore, the feature dimension
of PHLAC is independent of the codebook size, and it depends on
the class number, which is usually much smaller than the code-
book size. We confirm that the classification performance of this
image representation method (PHLAC) is considerably better than
that of the standard bag-of-features method and offers competitive
performance to the bag-of-features using spatial information.

We also extend PHLAC to autocorrelations of posterior probability
calculated from multiple image features. We call this image repre-
sentation method as ‘‘multiple features probability higher-order local
autocorrelations (MFPHLAC).’’ It is confirmed that MFPHLAC can
achieve a slightly better performance than PHLAC.

This paper is an extended version of the paper cited in [14].
The extensions include an algorithm of MFPHLAC, experimental
results of multiple spatial intervals, and discussions on feature
dimension.
2. Related studies

We intend to improve the classification accuracy of the bag-of-
features method by introducing local co-occurrence and informa-
tion pertaining to semantic class labels. From these points of
view, the following related studies have been reported.

Image feature extraction using local co-occurrence is recog-
nized as an important concept [12] for image recognition.
Recently, several methods have been proposed using local co-
occurrence. These methods are categorized as the methods that
use feature level co-occurrence and those that use codebook level
co-occurrence. The examples of the methods that use feature
level co-occurrence are the local self similarity method [15],
gradient local autocorrelations (GLAC) [16], and color index local
autocorrelation (CILAC) [17]. Low-level co-occurrence of image
properties such as edge direction and color can be represented by
these features, whereas the codebook level co-occurrence can
capture the co-occurrence of local appearance of images. The
examples of the methods that use codebook level co-occurrence
are correlatons [5] and visual phrases [6]. For using codebook
level co-occurrence, we need a large number of dimensions, e.g.,
even when the co-occurrence of only two codebooks is consid-
ered, the dimensions should be in proportion to the square of the
codebook sizes. It is known that a large number of codebooks
improves the classification performance [8], and a hundreds to
thousands number of codebooks is generally used. Thus, the
features selection method or dimension reduction method is
necessary for using codebook level co-occurrence, and current
researches are focused on methods to mine frequent and dis-
tinctive codebook sets [18,6,13]. The expressions of co-occurrence
using a generative model such as latent Dirichlet allocation have
also been proposed [4,19]. However, these methods require a
complex latent model and expensive parameter estimations. A
simpler method is favorable for real applications. Our proposed
method can be easily implemented, and its feature dimension is
relatively low (linear size of the number of categories) and
effective for classifications, because it is based on autocorrelations
of continuous values on posterior probability images.

From the viewpoint of the semantic feature representation
using class label information, Rasiwasia et al. [20] proposed
feature representation by using the bag-of-features method based
on the Gaussian mixture model. In their study, each theme vector
indicated the probability of each class label, and they refer to this
type of scene labeling as casual annotation. Using this feature,
they could achieve high classification accuracy with low feature
dimensions. Methods that provide posterior probability to a
codebook have also been proposed by Shotton et al. [21].
However, these methods do not employ the co-occurrence of
codebooks.
3. Probability higher-order local autocorrelations

3.1. Posterior probability images

Let I be an image region, and r¼ ðx,yÞt be a position vector in I.
The image patches whose center is rk are quantized to M code-
books fV1, . . . ,VMg by local feature extraction and the vector
quantization algorithm VQ ðrkÞAf1, . . . ,Mg. These steps are the
same as that of the standard bag-of-features method [3]. Posterior
probability Pðc9VmÞ of category cAf1, . . . ,Cg is assigned to each
codebook Vm using image patches on training images. Several
forms of estimating the posterior probability can be used. In this
study, we use two types of estimation methods.

(a) Bayes’ theorem: The posterior probability is estimated by
using Bayes’ theorem as follows:

Pðc9VmÞ ¼
PðVm9cÞPðcÞ

PðVmÞ
¼

PðVm9cÞPðcÞPC
c ¼ 1 PðVm9cÞPðcÞ

, ð1Þ

where PðcÞ ¼ ð# of class c patchesÞ=ð# of all patchesÞ, PðVmÞ ¼ ð#
ofVmÞ=ð# of all patchesÞ, PðVm9cÞ ¼ ð# of class c4VmÞ=ð# of class
c patchesÞ. We assume that # of class c patches are constant
(¼L) for all class, i.e., PðcÞ ¼ ðLÞ=ðCLÞ ¼ 1=C. Then, PðcÞ becomes
constant and thus we can use the following equation:

Pðc9VmÞ ¼
PðVm9cÞPC

c ¼ 1 PðVm9cÞ
: ð2Þ

(b) SVM weight: In our method, posterior probability is not
restricted to the theoretical definition of posterior probability.
Pseudo-posterior probability, which indicates the degree of sup-
port received by each category from a codebook, is also consid-
ered. The weight of each codebook, when learn by using the one-
against-all linear SVM [22], is used to define pseudo-posterior
probability. Assume that we use K local image patches from one
image; then, the histogram of bag-of-features H ¼ ðHð1Þ, . . . ,HðMÞÞ
can be represented as follows.

HðmÞ ¼
XK

k ¼ 1

1 if ðVQ ðrkÞ ¼mÞ,

0 otherwise:

(
ð3Þ

Using this histogram, the classification function of the one-
against-all linear SVM can be represented as follows:

arg max
cAC

fcðHÞ ¼
XM

m ¼ 1

ac,mHðmÞþbc

( )
, ð4Þ

where ac,m is the weight of each histogram bin and bc is the
learned threshold. We transform the weight of each histogram to
a non-negative value by ac,m’ac,m�minfacg and normalize it by
ac,m’ac,m=

PM
m ¼ 1 ac,m. Then, we can obtain the pseudo-posterior

probability by using the SVM weight as follows:

Pðc9VmÞ ¼
ac,m�minfacgPM

m ¼ 1ðac,m�minfacgÞ
: ð5Þ

We use the SVM weight to obtain pseudo-posterior probability,
because the proposed method becomes a complete extension of
the standard bag-of-features method when this pseudo-posterior
probability is taken into consideration (Section 3.3).

In this study, the grid sampling of local features [3] is carried
out at pixel interval of p for simplicity. We denote the set of
sample points as Ip and the map of (pseudo) posterior probability
of the codebook of each local region as a posterior probability
image. Examples of posterior probability images are shown in



Fig. 1. Posterior probability images (Bayes’ theorem): Original image, posterior probability of BIKE (left), posterior probability of CAR (middle), and posterior probability of

PEOPLE (right). These posterior probability images are calculated by using a two-pixel interval (p ¼ 2); for easy understanding, the original images are resized to the size of

the posterior probability images. The actual size of the original images is larger than the posterior probability images by p�p pixels. Local features and the codebook are

the same as those used in experiment (Section 4.1).
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Fig. 1. White color represents the high probability. The data are
obtained from the IG02 dataset used in the following experiment
(Section 4.1). The dataset contains three categories, namely, BIKE,
CAR, and PEOPLE. It is observed that the human-like contours
appear in the posterior probability image of the PEOPLE category.
Thus, the posterior probability images contain some spatial
information about the category.
Fig. 2. PHLAC: local averaging size (left), extracting process (right) and mask

patterns (bottom). The numbers f1,2,3g of the mask patterns show the frequency

at which their pixel value is used for obtaining the product expressed in Eq. (6).
3.2. PHLAC

Autocorrelation is defined as the product of signal values from
different points and represents the strong co-occurrence of these
points. Higher-order local autocorrelation (HLAC) [12] has been
proposed for extracting spatial autocorrelations, and its effective-
ness has been demonstrated in several applications such as face
and texture classification [23]. To capture the spatial autocorrela-
tions of posterior probability, we define HLAC features of poster-
ior probability images in terms of PHLAC. The definition of the N

th order PHLAC is as follows:

Rðc,a1, . . . ,aNÞ ¼

Z
Ip

Pðc9VVQðrÞÞPðc9VVQ ðrþa1Þ
Þ � � �Pðc9VVQ ðrþaN Þ

Þ dr:

ð6Þ

In practice, many forms of Eq. (6) can be obtained by varying
the parameters N and an ¼ ðanx,anyÞ

t . In this paper, these para-
meters are restricted to the following subset: NAf0,1,2g and
anx,anyAf7Dr � p,0g. By eliminating duplicates that arise from
shifts of center positions, the mask patterns of PHLAC can be
represented as shown in Fig. 2. These mask patterns are the same
as the 35 HLAC mask patterns [12]. Thus, PHLAC inherits the
desirable properties of HLAC for object recognition, namely, shift
invariance and additivity. Note that the spatial information that
HLAC uses is only local autocorrelation of 3�3 pixels and the
feature value is integrated in the image. This is different from
the spatial information realized by spatial partitioning of the
image [3]. Although PHLAC does not exhibit scale invariance, it
can be realized by using several sizes of mask patterns and local
features that exhibit scale invariance.

By calculating the correlations in local regions, PHLAC
becomes robust against small spatial difference and noise. These
local regions can be preprocessed by calculating their values in
terms of various alternatives such as their max, average, or
median. We found that the optimum alternative is the average.
Thus, the practical formulation of PHLAC is given by

0th order : RN ¼ 0ðcÞ ¼
X
rA Ip

LaðPðc9VVQ ðrÞÞÞ,

1st order : RN ¼ 1ðc,a1Þ ¼
X
rA Ip

LaðPðc9VVQðrÞÞÞLaðPðc9VVQðrþa1ÞÞ
Þ,



Fig. 3. Examples of PHLAC feature vector. The values Dr ¼ 48 and p ¼ 2 are used for the images shown in Fig. 1. Original images are those of PEOPLE (top), CAR (bottom).
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2nd order : RN ¼ 2ðc,a1,a2Þ ¼
X
rA Ip

LaðPðc9VVQ ðrÞÞÞLaðPðc9VVQ ðrþa1Þ
ÞÞ

LaðPðc9VVQ ðrþa2Þ
ÞÞ, ð7Þ

where La represents the local averaging on a ðDr � pÞ � ðDr � pÞ

region centered on r (Fig. 2). PHLAC is obtained by calculating
the HLAC on local-averaged posterior probability images (see
Algorithm 1). PHLAC is extracted from the posterior probability
images of all categories; thus the total number of features of
PHLAC becomes 35�C. Examples of PHLAC feature vector are
shown in Fig. 3. It is noticed that difference in the feature values
of each category is prominent, and some patterns that are
different from the 0th order appear in the higher-order feature
values. There are two possibilities with regard to the classification
using PHLAC image representations. One is the classification using
all PHLACs of all categories (PHLAC.All), and the other is using the
PHLAC of one category for each one-against-all classifiers
(PHLAC.Clw). We compare these classification methods in the
following experiments (Section 4.1.1).

Algorithm 1. PHLAC computation

Training Image:
(1) Create codebooks by using local features and a clustering
algorithm.
(2) Configure posterior probability of each codebook.
Training and Test Image:
(3) Create C posterior probability images by using p pixel
intervals.
(4) Preprocess posterior probability images (local averaging).
(5) Calculate HLAC features on posterior probability images by
sliding HLAC mask patterns.

3.3. Interpretation of PHLAC

Bag-of-features (0th) þ local autocorrelations (1st þ 2nd): If we
use SVM weights as pseudo-probabilities, then the 0th order of
the PHLAC becomes the same as that obtained during the
classification by the standard bag-of-features method using linear
SVM. Because H is a histogram (see Eq. (3)), Eq. (4) is rewritten as
follows.

arg max
cAC

XK

k ¼ 1

ac,VQ ðrkÞ
þbc

( )

¼ argmax
cAC

XK

k ¼ 1

ðac,VQ ðrkÞ
�minfacgÞþKminfacgþbc

( )
ð8Þ

arg max
cAC

XK

k ¼ 1

ac,VQ ðrkÞ
þbc

( )
¼ arg max

cAC
fAcRN ¼ 0ðcÞþBcg, ð9Þ

where Ac ¼
PM

m ¼ 1ðac,m�minfacgÞ and Bc ¼ Kminfacgþbc . (To
achieve the transformation from Eq. (8) to Eq. (9), the relationship
RN ¼ 0ðcÞ ¼

PK
k ¼ 1ðac,VQðrkÞ

�minfacgÞ=Ac is used.) It can be inferred
from this equation that the classification by the standard bag-of-
features method is possible only by using 0th order of the PHLAC
and learned parameters Ac and Bc . (It was assumed that pre-
processing was not carried out in the calculation of PHLAC.) In
this case, the SVM weight is used as the pseudo-posterior
probability; however, it is expected that other posterior prob-
abilities may also posses a similar property of the 0th order
PHLAC. Because the histogram of the standard bag-of-features is
created without using local co-occurrences, the 0th order of
PHLAC is almost thought of as a one-against-all bag-of-features
classification. Higher-order features of PHLAC have richer infor-
mation on posterior probability images (e.g., the shape of local
posterior probability distributions). Thus, if any commonly exist-
ing patterns are contained in specific classes, this representation
can be expected to achieve better classification performance than
the standard bag-of-features method.

The relationship between the standard bag-of-features method
and PHLAC classification is shown in Fig. 4. In our PHLAC
classification, we train an additional classifier using the 0th order
PHLAC fRN ¼ 0ð1Þ, . . . ,RN ¼ 0ðCÞg and use the higher-order PHLAC as
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a feature vector. In following experiment (Section 4.1.1), the
classifier is also trained when only the 0th order PHLAC is used.
Thus, only the 0th order PHLAC can possibly perform better than
the standard bag-of-features method.

Synonymy invariance: Synonymous codebooks are codebooks
that have similar posterior probabilities [6]. PHLAC classification
can be carried out directly on the posterior probability images,
and the same features can be extracted even when a local
appearance of an image is exchanged with other appearances
whose posterior probabilities are the same as the local appear-
ance. This synonymy invariance is important for creating compact
image representations [13].
Fig. 5. Mask patterns of MFPHLACiIn

Fig. 4. Schematic comparison of the standard (a) bag-of-features classification

with our proposed (b) PHLAC classification.
3.4. MFPHLAC

Recently, it has been reported that high classification perfor-
mance can be achieved by implementing methods that use
multiple local features in generic object recognition problems
[24,25]. Although PHLAC can be calculated from posterior prob-
ability images estimated by several features independently, it is
expected that richer information can be extracted by autocorrela-
tions of posterior probability by using multiple features. We
extend PHLAC to autocorrelations of posterior probability calcu-
lated from multiple image features. We call this image represen-
tation method as MFPHLAC.

Assuming that we use T ðTZ2Þ types of local features, the
definition of the N th order MFPHLAC can be expressed as follows:

Rðc,t0, . . . ,tN ,a1, . . . ,aNÞ

¼

Z
Ip

Pt0
ðc9VVQðrÞÞPt1

ðc9VVQðrþa1Þ
Þ � � � PtN

ðc9VVQ ðrþaN ÞÞ dr: ð10Þ

Here Pt indicates the posterior probability estimated by feature
type tAf1, . . . ,Tg.

As in the case with PHLAC, the parameters N and an ¼ ðanx,anyÞ
t

are restricted to the following subset: NAf0,1,2g and anx, anyA
f7Dr � p,0g. Thus, the practical formulation of MFPHALC is
given by

0th order : RN ¼ 0ðc,t0Þ ¼
X
rA Ip

LaðPt0
ðc9VVQðrÞÞÞ,

1st order : RN ¼ 1ðc,t0,t1:a1Þ ¼
X
rA Ip

LaðPt0
ðc9VVQðrÞÞÞLaðPt1

ðc9VVQ ðrþa1Þ
ÞÞ,
the case of two features ðt1 ,t2Þ.
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2nd order : RN ¼ 2ðc,t0,t1,t2,a1,a2Þ

¼
X
rA Ip

LaðPt0
ðc9VVQ ðrÞÞÞLaðPt1

ðc9VVQðrþa1Þ
ÞÞLaðPt2

ðc9VVQ ðrþa2Þ
ÞÞ:

ð11Þ

Here, MFPHLAC is calculated by sliding extended mask patterns
from PHLAC (Algorithm 2). By eliminating duplicates that arise
from the second and third power of a certain pixel, the mask
patterns of MFPHLAC can be represented as shown in Fig. 5. In
Fig. 5, the mask pattern with two features is shown. The
independent number of feature values that arise from the second
power of a certain pixel is TþT C2, because there exist T combina-
tions of the second power of the same features and TC2 combina-
tions obtained by the multiplication of different feature values.
For example, the number of mask patterns become 233 when
T¼2 and 739 when T¼3. Since MFPHLAC involves the calculation
of autocorrelation from multiple features, these features contain
richer information than PHLAC features calculated from multiple
features independently. Thus, it is expected that better classifica-
tion performance can be achieved by using MFPHLAC.

Algorithm 2. MFPHLAC computation

Training Image:
(1) Create T types of codebooks by using local features and a
clustering algorithm.
(2) Configure T posterior probabilities of each codebook type.
Fig. 6. Recognition rates of IG02. The basic settings are codebook size ¼ 400 ((b)–(f)),

(b) category, (c) spatial interval, (d) autocorrelation order, (e) preprocessing and (f) cla
Training and Test Image:
(3) Create C� T posterior probability images by using p pixel
intervals.
(4) Preprocess posterior probability images (local averaging).
(5) Calculate MFPHLAC on posterior probability images by
sliding MFPHLAC mask patterns.

4. Experiment

We compared the classification performances of the standard
bag-of-features method and PHLAC using three commonly used
image datasets: IG02 [26], a dataset having 15 natural scene
categories (Scene-15) [3], and Caltech101 dataset [32].

To obtain reliable results, we repeated the experiment 10
times except for Caltech101 dataset. Ten random subsets were
selected from the data to create 10 pairs of training and test data.
For each of these pairs, a codebook was created by using k-means
clustering on the training set. For classification, a linear one-
against-all SVM was used. For the implementation of SVM, we
used LIBSVM. Five-fold cross validation was carried out on the
training set to tune the parameters of SVM. The classification rate
reported by us is the average of the per-class recognition rates,
which in turn are averaged over 10 random test sets. With regard
to Caltech101 dataset, we repeated the experiment five times.

As local features, we used a SIFT descriptor [27] sampled on a
regular grid. The modification by the dominant orientation was
spatial interval Dr¼ 12 ((a), (b), (d)–(f)), and PHLAC. All (a) number of codebooks,

ssification type.



Fig. 7. Recognition rates of multiscale spatial interval (IG02).
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not used and the descriptor was computed on a 16�16 pixel patch
sampled every 8 pixels (p¼8). In the codebook creation process, all
the features sampled every 16 pixels on all training images were used
for k-means clustering. We used the L2-norm normalization method
for both the standard bag-of-features method and PHLAC. In PHLAC,
the features were L2 normalized by each order of autocorrelations.
We denote the classification of PHLAC using posterior probability by
Bayes’ theorem as PHLACBayes and PHLAC using pseudo-probability by
SVM weight as PHLACSVM. It should be noted that although the SVM
of the standard bag-of-features method is used in Eq. (4) of PHLACSVM,
the result of the 0th order PHLACSVM is different from the result of the
standard bag-of-features method because we train an additional
linear SVM as mentioned in Section 3.3.

4.1. Results of IG02 dataset

4.1.1. Basic property

First, we used the IG02 [26] (INRIA Annotations for Granz-02)
dataset, which contains large variations of the target size. The
classification task is to classify the test images into three cate-
gories, i.e., CAR, BIKE, and PEOPLE. The number of training images
in each category is 162 for CAR, 177 for BIKE, and 140 for PEOPLE.
The number of test images is the same as that of the training
images. We resampled 10 sets of training and test sets from all
images. The image size was 640�480 pixels or 480�640 pixels.
Maraszalek et al. prepared mask images that indicated the
locations of the target objects. We also attempted to estimate
the posterior probability of Eq. (1) by using only the local features
of the target object region. We denote these PHLAC features as
PHLACMASK. The experimental results are shown in Fig. 6.

Overall performance: The basic settings used were a spatial
interval Dr¼ 12 and the classification using PHLACs of all cate-
gories (PHLAC.All). In all the codebook sizes, all types of PHLACs
achieve higher classification performances than the standard bag-
of-features method (Fig. 6(a)). PHLACSVM achieves higher classifi-
cation rates than PHLACBayes. By using mask images for estimating
the posterior probability, the performance of PHLACMASK improves
when the codebook size is larger than 400.

Recognition rates per category: The classification rates of PHLAC
are higher than those of the standard bag-of-features method in
almost all cases (Fig. 6(b)). Especially, the classification rates of
the PEOPLE category using PHLAC are higher than those using the
standard bag-of-features method for any settings of PHLAC. This
is because human-like contours (shown in Fig. 1) appear in the
posterior probability images obtained from images of PEOPLE;
these contours were less visible in the posterior probability
images obtained from images of other categories.

Spatial interval: The spatial interval appears to be better near
Dr¼ 12 (12�8¼96 pixels) for all settings except for PHLACSVM

(Fig. 6(c)). The classification rates of PHLACBayes and PHLACMASK

decrease as the spatial interval is increased from Dr¼ 20. In the case
of PHLACSVM, classification rates are high even when the spatial
interval increases, and the peak of the classification rates appears near
Dr¼ 20. However, at Dr¼ 20, the classification rates for PHLACBayes

and PHLACMASK reduce; therefore, as a basic settings, we set the
spatial interval to Dr¼ 12. In practice, a multiscale spatial interval is
more useful than a single spatial interval, because there are several
optimal spatial intervals (Section 4.1.2).

Order of autocorrelation: In the cases of PHLACBayes and PHLAC-

MASK, the classification rates increase with the order of autocorre-
lation (Fig. 6(d)). PHLACSVM exhibit a higher classification
performance than other PHLACs using only 0th order autocorrela-
tions. Thus, the PHLACSVM did not decrease the classification
performance compared to other PHLACs in the non-optimal
spatial intervals ðDr422Þ. For experiments using up to 2nd order
autocorrelations, PHLACSVM can achieve the best classification
performance. Especially in the optimal spatial interval of
PHLACSVM ðDr¼ 20Þ, the classification using the 2nd order auto-
correlation was 5.01% better than 0th order autocorrelation
(Fig. 6(c)).

Preprocessing: As can be observed from Fig. 6(e), the graphs of the
local averaging and no preprocessing cases appear to be comparable.
However, when the codebook size and spatial intervals are changed,
the local averaging often outperformed the no preprocessing case.
Thus, we recommend the use of local averaging for preprocessing.

Classification type: Of the different classification types, PHLAC.All
exhibits better performance than PHLAC.Clw (Fig. 6(f)) in PHLACBayes

and PHLACMASK. On the other hand, when the PHLACSVM is used, the
PHLAC.Clw classification performs better than the PHLAC.All. This
indicates that the number of dimensions for the training of each SVM
can be reduced to 35 when PHLACSVM is used.
4.1.2. Multiscale spatial interval

A multiscale spatial interval can capture several spatial co-
occurrences. Thus, such an interval is expected to exhibits a higher
classification performance than a single spatial interval, described in
the paper cited in [23]. We concatenated the feature vector calculated
from different sizes of mask patterns by varying the spatial interval
Dr. The number of spatial intervals shows how many Dr is used. We
experimented with all combinations of Dr by using the values
f2,4,8,16,22g for each number of spatial intervals. The classification
result reported in this paper is the best classification rate selected
from the results obtained for these combinations.

The classification rates of PHLAC using a multiple spatial
interval are shown in Fig. 7. In Fig. 7, PHLAC.All was used. It is
confirmed that the performance of PHLACBayes and PHLACMASK

improved when the number of spatial intervals was increased to
four. The use of PHLACSVM does not increase the accuracy because
only Dr¼ 22 is higher than other spatial intervals. However, the
performance did not decrease when a multiple spatial interval of
four was used. These results indicate that the use of a multiscale
spatial interval is desirable for both reducing the setting cost of Dr

and improving the classification accuracy.

4.2. Results of Scene-15 dataset

4.2.1. Results of PHLAC

Next, we performed experiments on the Scene-15 dataset [3].
The Scene-15 dataset consists of 4485 images spread over 15
categories. The 15 categories contain 200–400 images each and
range from natural scenes like mountains and forests to man-
made environments like kitchens and offices. We selected 100
random images from each category as a training set and the



Fig. 8. Examples of Scene-15 dataset. Examples of the original images (a) and probability images (b). The original images of (b) are suburb (b-1), coast (b-2), and forest

(b-3).

Fig. 9. Recognition rates of Scene 15 per spatial interval (codebook size is 200).
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remaining images as the test set. Fig. 8 shows some examples of
dataset (Fig. 8(a)) and posterior probability images (Fig. 8(b)). It is
observed that each posterior probability image contains some
spatial patterns.

We used PHLAC.All, and experimentally set the spatial interval
to Dr¼ 8. This was determined by comparing the result of
Dr¼ f1,2,4,6,8,12g in codebook size 200. The classification rates
in each Dr are shown in Fig. 9. The classification rates are
improved as to increase the spatial interval upto Dr¼ 8. The
actual size of each mask pattern corresponding to Dr¼ f1,4,8g is
shown in Fig. 10. Figs. 9 and 10 show the larger regions correla-
tion produce better performance, e.g., the width of the mask
pattern corresponding to Dr¼ 8 is about half of the original
image. However, the minimum size of mask pattern ðDr¼ 1Þ
already outperformed the standard bag-of-features. This shows
the local autocorrelation is effective even the size of mask pattern
is small.

The recognition rates for the Scene-15 dataset are shown in
Fig. 11. For the Scene-15 dataset, PHLAC achieves higher recogni-
tion performances than the standard bag-of-features classification
for all categories and codebook sizes. For this dataset, PHLACBayes

exhibits higher accuracy than PHLACSVM. When the codebook size
is 200, the recognition rate of PHLACBayes is 15% higher than that
of the standard bag-of-features classification.

In our experiment, the classification rates of PHLACBayes are around
69.48 (70.27)% by using linear SVM for a codebook size of 200, and
that the classification rates of the standard bag-of-features classifica-
tion using a histogram intersection kernel [3] are around 66.31
(70.15)%. Lazebnik reported differences in the 72.2 (70.6)%; this
difference can be attributed to the differences in the implementations
such as feature extraction and codebook creation. The proposed
method and the standard bag-of-features method use the same
codebook and features used in our experiments.



Fig. 10. Actual size of mask patterns: (a) original image, (b) probability image, (c) mask pattern of Dr¼ 1, (d) mask pattern of Dr¼ 4, (e) mask pattern of Dr¼ 8, where

green points of (a) is the sampling points of local features and gray areas of (c)–(e) show the local-averaged areas. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

Fig. 11. Recognition rates of Scene 15 per codebook size (left) and per category (right) when codebook size is 200.
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The examples of PHLACBayes features are shown in Fig. 12.
These examples are of those samples that are classified correctly
by PHLACBayes; the bag-of-features method failed to classify these
samples. It is noticed that the posterior probabilities of correct
category are not maximum in 0th order; the 1st order feature
values of the correct category increase for some samples (inside
city and street). However, it is not necessary that the posterior
probabilities of correct category are high. We can also use the
other categories evidences such as mountain likely contains forest
and open country like regions in both 0th and higher-order
feature values for final classifiers. On the basis of all these
evidences, the PHLAC classification outperformed the classifica-
tion carried out using the standard bag-of-features method.
4.2.2. Results of MFPHLAC

Next, we compared MFPHLAC and PHLAC using a multiscale
spatial interval. The number of features used simultaneously is
restricted to 2 (T¼2). We used five features as local features.
These were Intensity, GLAC [16], CS-LBP [28], Texton in addition
to the SIFT-like features described in the beginning of Section 4.

Intensity: A 128-dimensional intensity histogram in a 4�4
cell obtained from a 16�16 pixel patch was used. The intensity
level of a pixel was divided to eight level from the original 0–255
intensity value. L1 normalization was used in each cell.

GLAC: A 256-dimensional co-occurrence histogram of gradient
direction that contains four types of local autocorrelation patterns
was used. We calculated the feature values from a 16�16 pixel
patch, and histogram of each autocorrelation pattern was L2-Hys
normalized.

CS-LBP: A 256-dimensional histogram of 64 types of intensity
patterns per 4�4 cells obtained from 16�16 pixel patch was
used. We applied L2-Hys normalization to each cell.
Texton: The histogram of filter responses in a 16�16 pixel patch
was used. We used 13 types of Schmid filters [29] and eight
directions and three sizes of the multi-resolution Gabor filter [30].
We considered the positive and negative responses of the Schmid
filter; thus, the number of dimensions of the filter was 26. We
considered the amplitude of the responses of Gabor filter; thus, the
dimension of the filter was 24. In total, the number of dimensions of
Texton was 50. We applied L2 normalization to each filter type.

For all features, we created 200 codebooks by k-means
clustering. In PHLAC and the bag-of-features method using multi-
ple features, the results were obtained by using a concatenated
feature vector having multiple feature type. Posterior probability
images were created by using Bayes’ theorem. PHLAC.All was
used for the classification method.

We concatenated the feature vector calculated from different
sizes of mask patterns, as described in Section 4.1.2. The number
of spatial intervals shows how many Dr is used. We experimented
with all combinations of Dr by using the values f1,2,4,8,12g for
each number of spatial intervals. The classification result reported
in this paper is the best classification rate selected from the
results obtained for these combinations. Since MFPHLAC requires
a large number of dimensions, we restricted the number of the
spatial intervals for MFPHLAC to 2. The features of MFPHLAC were
L2 normalized by each order of autocorrelations.

It is known that the use of spatial information is very effective
[3] in achieving the high accuracy for Scene-15 dataset. We also
compared the proposed methods with the bag-of-features using
spatial information. Spatial information is realized by spatial
partitioning of an image, and then, a bag-of-features histogram
is created in each spatial partition. The settings for the spatial
partitioning are SI1(2�2), SI2(4�4), and PSI(1�1, 2�2, 4�4).
The features of the bag-of-features method with spatial informa-
tion are L2 normalized by each partitioning setting. These setting



Fig. 12. Examples of PHLAC features (PHLACBayes); All examples are those of the samples that were recognized correctly by PHLAC and not recognized by the

bag-of-features method.
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of the spatial partitioning is the same as the setting cited in [3];
however, to compare only the goodness of feature representation,
linear SVM is used for all the methods. Note that spatial
partitioning of an image was used only for the bag-of-features
and this was not used for PHLACs.

The results are shown in Fig. 13. In all features, PHLAC
achieved a considerably higher classification performance than
the standard bag-of-features method. The classification perfor-
mance improves better as the number of multiple spatial intervals
increases. MFPHLAC achieved better performance than PHLAC for
the same number of multiple spatial intervals. PHLAC performs
slightly better than the spatial pyramid bag-of-features method
with a single feature. The performance of MFPHLAC and PHLAC is
competitive compared to that of the spatial pyramid bag-of-
features method with two features.

4.3. Results of Caltech101 dataset

Finally, we compared PHLAC and the bag-of-features method
using Caltech101 dataset [32]. The Caltech101 dataset contains
8677 images spread over 101 object categories, where the
number of images in each category varies from 31 to 800 images.
We used 30 images for training per category, and 50 images per
category were used for testing. We repeated the random selection
five times and report the average classification accuracy. Because
the image size differs per image in this dataset, we resized the
original images so that the all images have almost the same pixels
(z� z pixels). To extract three sizes of local feature, we use three
image size z and we changed the sampling interval p so that
ðz,pÞAfð100,2Þ,ð200,4Þ,ð400,8Þg. In this set up, we used PHLAC.All
and PHLACBayes, and experimentally set the spatial interval to
Dr¼ 8 for all image sizes. The concatenated feature of the features
calculated by each size was used for both bag-of-features and
PHLAC. As local features, we used SIFT-like feature and following
OpponentSIFT feature [31].

OpponentSIFT: The rgb color space is converted to the oppo-
nent color space. Then calculate SIFT-like feature over the all
opponent color spaces, independently. This gives 3�128 dimen-
sional feature. We applied L2-Hys normalization to each
color space.



Fig. 13. Recognition rates of MFPHLAC and comparison with those of bag-of-features method with spatial information (Scene-15). SI1 (Spatial Information 2�2), SI2

(Spatial Information 4�4), PSI (Pyramid Spatial Information (1�1, 2�2, 4�4)).

Fig. 14. Recognition rates of Caltech101 dataset.

Table 1
Comparison to the other methods on the Caltech101 dataset.

Method Ours Lazebnik et al.

[3]

Zhang et al.

[2]

Grauman et al.

[33]

Classification Linear

SVM

Kernel SVM Kernel SVM Kernel SVM

Avg. 40.4% 64.6% 53.9% 43%
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We used 400 codebooks created by k-means clustering. The
results are shown in Fig. 14. In this dataset, the PHLAC achieved
also better performances when both SIFT-like and OpponentSIFT
features were used for local features. SIFT-like feature exhibited
better performance than OpponentSIFT. When SIFT-like feature
was used for local feature, PHLAC achieved 40.42(70.76)%
average recognition rate while that of the standard bag-of-
features was 35.46 (71.41)%.

The comparison to the other recent proposed methods in the
same setting is shown in Table 1. Our recognition rate is lower
than that of the other methods because the classification rule is so
simple. Despite the linear classification, the method achieved
comparable results to that of Grauman et al. [33].
5. Discussion on feature dimension

One of the advantages of PHLAC is its feature dimension. The
comparison of the dimension of different feature representation is
listed in Table 2. The dimension of the bag-of-features method
depends on the codebook size M. Thus, to achieve high accuracy,
the training time of a classifier should be increased and a large
memory size is required. Furthermore, it is necessary for larger
dimensions to utilize spatial grid information. On the other hand,
the dimension of PHLAC depends on the number of categories C,
and it is independent of the codebook size M. At least, the 0th
order of PHLAC can reflect the reliable estimation of large code-
book size; thus, the accuracy of PHLAC can be increased by not
increasing the feature dimension. PHLACSVM must train SVM using
bag-of-features for estimations posterior probability of codebook;



Fig. 15. Recognition rates of compressed PHLAC by PCA (Scene-15 dataset): the

points of the extreme right indicate original PHLAC without PCA.

Table 2
Dimensions of feature representations.

Feature General IG02

(M ¼ 400, C ¼ 3)

Scene-15

(M ¼ 200, C ¼ 15)

Caltech-101

(M ¼ 400, C ¼ 101)

PHLAC 35C 105 525 3535

MFPHLAC 233C – 3495 –

BOF M 400 200 400

BOF (with SI1) 4M – 800 –

BOF (with SI2) 16M – 3200 –

BOF (with PSI) 21M – 4200 –
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However, PHLACSVM is not effective to Scene-15 dataset which
contains large number of category compared to PHLACBayes. Thus,
we highly recommend the use of PHLAC using Bayes’ theorem
when the codebook size and number of categories are large.
Although it is obvious that the dimension of PHLAC for all
categories becomes large for a problem which involving a very
large number of categories, the number of the category that is
classified once undergoes reduction by hierarchal category
recognition.

Furthermore, the PHLAC feature can be compressed effectively
by principle component analysis (PCA). The recognition rates per
compressed dimension by PCA are shown in Fig. 15. In this
experiment, PHLACBayes and PHLAC.All were used. Because redun-
dancy exists owing to similar properties of mask patterns and
similar posterior probability images of different categories, the
performances do not decrease even when the dimension is less
than 40% of the original PHLAC dimension. Thus, the feature
dimension of PHLAC can be further reduced from linear size of the
categories with maintaining the classification accuracy.
6. Conclusion

In this paper, we proposed an image description method using
higher-order local autocorrelations on posterior probability
images called ‘‘probability higher-order local autocorrelations
(PHLAC).’’ This method is regarded as an extension of the standard
bag-of-features method. Our method overcomes the limitation of
spatial information by utilizing the co-occurrence of local spatial
patterns in posterior probabilities. This method possesses the
properties of shift invariance and additivity as does HLAC [12].
Experimental results revealed that the proposed method achieved
a higher classification performance than the standard bag-of-
features method by an average of 2% and 15% in the case of the
IG02 and Scene-15 datasets, respectively, using 200 codebooks.
In Caltech-101, the proposed method improved 5% using 400
codebooks. We also extended PHLAC to autocorrelations of
posterior probability calculated from multiple image features,
which is called ‘‘multiple features probability higher-order local
autocorrelations (MFPHLAC).’’ MFPHLAC was able to achieve a
slightly better performance than PHLAC.

We also compared the proposed methods with the bag-of-
features method using spatial information. PHLAC was able to
achieve a competitive result compared to the bag-of-features
method using spatial information.
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