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1. Details of the baseline descriptors

In section 4.2 of the paper, we compared the distribu-
tion modeling of GOG to other distributions. Below, we
describe the details of the compared methods.

The Mean, Cov and Gauss are global distribution de-
scriptors of pixel features within each region. The Cov-of-
Cov, Cov-of-Gauss and GOG are hierarchical distribution
descriptors. The Cov-of-Cov uses covariance matrix in both
patch and region modeling. The Cov-of-Gauss uses Gaus-
sian for patch modeling and covariance matrix for region
modeling.

For a fair comparison to GOG which is incorporated with
patch weights, we adopted the weighted pooling for all de-
scriptors. Formally,
Mean: µ′ = 1∑

i∈G wi

∑
i∈G wif i,

Cov: Σ′ = 1∑
i∈G wi

∑
i∈G wi(f i − µ′)(f i − µ′)T ,

Gauss: P ′ = |Σ′|−
1

d+1

[
Σ′ + µ′µ′T µ′

µ′T 1

]
,

where wi is a weight of pixel i and determined in the same
manner as ws.
Cov-of-Cov: Ξ = 1∑

s∈G ws

∑
s∈G ws(hs − ν)(hs − ν)T ,

where hs = vec(log(Σs)) and ν = 1∑
s∈G ws

∑
s∈G wshs.

Cov-of-Gauss: As per ΣG defined by Eq.(5).
The tangent space mapping using log-Euclidean and the

half vectorization are commonly applied for all descriptors
except Mean. The descriptors of regions are concatenated
to form an image representation.

Table 1 (a) summarizes the dimensionality of each de-
scriptor. We commonly used the same 7 regions as GOG
and the fusion approach that concatenates meta descrip-
tors extracted from 8 dimensional pixel features (d = 8)
on RGB color space. Here, let us denote D(d) as the di-
mension per region for a meta descriptor. Then the feature
vector dimension of an image becomes 7 regions ×D(8)
dim. For example, the dimensionality of Cov becomes
7 × (82 + 8)/2 = 252. The dimensionality of other de-
scriptors can be obtained with the same way.

Table 1. Dimensions of each meta descriptor. (a) For comparison
in Sec.4.2. (b) For comparison in Sec.4.3.

Methods Dimension per region D(d)

(a)

Mean d
Cov m′ = (d2 + d)/2

Gauss m = (d2 + 3d)/2 + 1
Cov-of-Cov (m′2 +m′)/2

Cov-of-Gauss (m2 +m)/2
GOG (m2 + 3m)/2 + 1

(b)

GOLD d+ (d2 + d)/2
2AvgP (d2 + d)/2
HASC d2 + d
LDFV 2Kd

2. Details of other meta descriptors

In Table 1 of the paper, we compared the GOG descriptor
with other meta descriptors. Below, we describe the details
of these descriptors used in the comparison.
Cov [17]: The covariance descriptor describes an image re-
gion by a d× d dimensional covariance matrix. We applied
log-Euclidean and half-vectorization to the covariance ma-
trix. Therefore, the dimensionality is (d2+d)/2 per region.
HASC [2]: The HASC is composed of a covariance de-
scriptor and an Entropy and Mutual Information (EMI) de-
scriptor. The EMI descriptor captures the non-linear rela-
tion within pixel features and its dimensionality is the same
as the covariance descriptor. Therefore, the dimensionality
of the HASC is d2 + d per region. For implementation, we
used the code provided by the authors [2].
GOLD [16]: The GOLD describes an image region by a
mean vector and a covariance matrix. The covariance ma-
trix is flattened by log-Euclidean and the half-vectorization
is applied. The two components are concatenated into one
vector. Therefore, the dimensionality is d+ (d2 + d)/2 per
region. We omitted the spatial pyramid and the power nor-
malization used in the original paper.
2AVgP [3] The 2AvgP describes an image region by a
zero-mean covariance matrix, i.e., autocorrelation matrix.
We applied log-Euclidean and the half-vectorization to the
matrix. Therefore, the dimensionality is (d2 + d)/2 per re-
gion.



LDFV [10] : The LDFV encodes pixel features using
Fisher Vector (FV) coding, which encodes the difference
of pixel features from the pre-trained GMM means. The di-
mensionality is 2Kd, where K is the number of GMM com-
ponents. The parameters of GMM were estimated on each
training set of random splits. Following the recommended
setting [10], we set K = 16. For implementation of the
GMM estimation and FV coding, we used VLFeat [18].
Cov-of-Cov [7, 15] : The Cov-of-Cov describes an image
region as a covariance matrix of patch covariances. Each
patch within a region is described as a d × d dimensional
covariance matrix. The patch covariance matrix is flattened
and half-vectorized into a m′ = (d2 + d)/2 dimensional
vector. Each region is described as a m′ ×m′ dimensional
covariance matrix of the vectors of patch covariances. By
applying log-Euclidean and the half-vectorization again, the
dimensionality per region becomes (m′2 +m′)/2.

Table 1 (b) summarizes dimensionality of each meta de-
scriptor. We commonly used the same 7 regions as GOG
and the fusion approach that concatenates meta descriptors
extracted from 4 pixel features, those dimensions are d =
{8, 8, 8, 7}. Here, let us denote D(d) as the dimension per
region for a meta descriptor. Then the feature vector dimen-
sion of the image becomes 3 features ×7 regions ×D(8)
dim. + 7 regions ×D(7) dim. For example, the dimension-
ality of Cov becomes 3×7×(82+8)/2+7×(72+7)/2 =
952. The dimensionality of other descriptors can be ob-
tained with the same way.

3. Performance without metric learning
To see the original performance of GOG without metric

learning, we compare the performance with cosine distance.
The compared descriptors are CH+LBP [20], gBiCov [11]
and LOMO [8]. For all methods, the proposed mean re-
moval + L2 normalization is adopted. Fig. 1 shows the
CMC curves of the compared descriptors. It can be seen
that the GOGFusion achieves comparable results to LOMO
in VIPeR, CHUK01 and GRID datasets. Besides, the
GOG outperforms all compared descriptors on PRID450S
dataset.

4. CMC curves for performance comparison
In Table 2 and Table 3 of the paper, we reported only

the CMC scores at r = 1,5,10 and 20 due to the space lim-
itation. In this supplementary material, we provide the full
CMC curves over the rank 1 to 100 obtained by compared
methods.

Fig 2 shows the CMC curves of the compared meth-
ods including GOGFusion+XQDA, MetricEmsemble [13],
LOMO+XQDA [8], ImprovedDeep [1], SCNCD [21],
SalMatch [22], MLFL [24], CH+LBP [20]+XQDA, and
gBiCov [11]+XQDA . For several methods, the CMC
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Figure 1. CMC curves usnig cosine distance on (a) VIPeR, (b)
CUHK01(M=1), (c) PRID450S and (d) GRID.

curves are not included for several datasets because the pre-
vious works do not report them.

In addition to the compared methods in the main pa-
per, the Figure contains methods including Local Fisher
discriminant analysis (LF) [14], SDALF [4], KISSME [6],
PCCA [12],PRDC [25], and ELF [5] on VIPeR dataset
are brought from their original papers. The results of five
ELF6 [5] features on GRID dataset are brought from the pa-
per [9]. The results of SDALF [4], LMNN [19], eSDC [23],
and KISSME [6] on CUHK01 and CUHK03 datasets are
brought from the paper [1].
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Figure 2. CMC curves of state-of-the-art methods on (a) VIPeR, (b) PRID450S, (c) GRID, (d) CHUK01(M=1), (e) CUHK03 Labeled and
(f) CUHK03 Detected datasets.
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