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Abstract

Describing the color and textural information of a per-
son image is one of the most crucial aspects of person re-
identification. In this paper, we present a novel descrip-
tor based on a hierarchical distribution of pixel features.
A hierarchical covariance descriptor has been successfully
applied for image classification. However, the mean in-
formation of pixel features, which is absent in covariance,
tends to be major discriminative information of person im-
ages. To solve this problem, we describe a local region in
an image via hierarchical Gaussian distribution in which
both means and covariances are included in their parame-
ters. More specifically, we model the region as a set of mul-
tiple Gaussian distributions in which each Gaussian rep-
resents the appearance of a local patch. The characteris-
tics of the set of Gaussians are again described by another
Gaussian distribution. In both steps, unlike the hierarchical
covariance descriptor, the proposed descriptor can model
both the mean and the covariance information of pixel fea-
tures properly. The results of experiments conducted on five
databases indicate that the proposed descriptor exhibits re-
markably high performance which outperforms the state-of-
the-art descriptors for person re-identification.

1. Introduction
Appearance matching of person images observed in dis-

joint camera views, referred to as person re-identification, is
receiving increasing attention, mainly because of its broad
range of applications [11]. In this task, the person images
are captured from various viewpoints and under different
illuminations, resolutions, human poses, and background
environments. These large intra-personal variations in per-
son images cause serious difficulties. In addition, similar
clothes among different persons add further challenges.

To address these difficulties, researchers are actively
working on appearance descriptors [27, 28, 29, 43, 46, 47]
and methods for matching them [22, 32, 33, 42, 48]. De-
scriptors characterize the appearance (color and textural)
information of human clothes. A good descriptor should
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Figure 1. Importance of hierarchal distribution: (a) Regions that
have the same distribution (mean/covariance) of pixel features
(each color indicates the same feature vector). (b) Local patches
inside the regions which have different pixel feature distribution.
(c) Regions can be distinguished via distributions of patch level
distributions.

be robust against intra-personal variations and at the same
time have high discriminative power to distinguish different
persons.

Person images are low in resolution and have large pose
variations; consequently, it has been proved that the most
important cue for person re-identification is color infor-
mation such as color histograms and color name descrip-
tors [43]. Because they cannot sufficiently differentiate dif-
ferent persons of similar color, textural descriptors such as
Local Binary Pattern (LBP) and the responses of filter banks
are often combined with color descriptors [33, 42, 48].

A covariance descriptor [40] describes a region of inter-
est as a covariance of pixel features. It provides a natural
way to fuse different modalities, e.g., color and texture, of
pixel features into a single meta-descriptor. Since the co-
variance descriptor is obtained by averaging features inside
the region, it remedies the effects of noise and spatial mis-
alignments. Consequently, it has been successfully applied
to person re-identification [4, 5, 44].

In this paper, we propose a novel region descriptor based
on hierarchical Gaussian distribution of pixel features for
person re-identification. More specifically, we densely ex-
tract local patches inside a region and regard the region as
a set of local patches. We firstly model the region as a set
of multiple Gaussian distributions, each of which represents
the appearance of one local patch. We refer to such a Gaus-
sian distribution representing each local patch as a patch
Gaussian. The characteristics of the set of patch Gaussians
are again described by another Gaussian distribution. We
refer to this Gaussian distribution as a region Gaussian. The
parameters of the region Gaussian are then used as feature
vector to represent the region.
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Figure 2. Importance of mean: (a) Original images. (b) Images
that show mean RGB values of 10 × 10 pixel patches of (a). (c)
Mean removed images (each RGB value is scaled over the range
[0,255] for visualization). It is easy to determine the same persons
from (b), whereas it is hard from (c).

Our motivation of the use of a hierarchical model stems
from the appearance structure of person images. The per-
sons’ clothes consist of local parts, each of which has local
color/texture structures. The spatial arrangement of these
parts determines the global appearance structure. However,
most of the existing meta descriptors [9, 10, 27, 30, 37, 40]
are based on a global distribution of pixel features inside
a region. Thereby, the local structure of the person image
is lost. In contrast, our proposed descriptor describes the
global distribution using the local distribution of the pixel
features. Indeed, it can distinguish the textures which have
the same global distribution but different local structures, as
shown in Fig. 1.

We use the Gaussian distribution as a base component of
the hierarchy. The motivation of the use of the distribution
comes from the importance of the mean color of local parts.
Although the hierarchical representation of covariance de-
scriptors has been proposed [18, 36], the mean information
is not included in each hierarchy. The loss of mean infor-
mation is a crucial problem when they are applied to person
re-identification. This is because the clothes a person wears
tend to consist of a small number of colors in each local
part, and therefore the mean color in the local parts tends
to be the major discriminative information of the persons.
As shown in Fig. 2, the mean images of local color contain
highly distinguished information of different persons.

We name the proposed hierarchical method Gaussian Of
Gaussian (GOG) descriptor. The GOG descriptor provides
a conceptually simple and consistent way to generate dis-
criminative and robust features that describe color and tex-
tural information simultaneously. The results of extensive
experiments conducted on five public datasets reveal that,
despite its simplicity, our proposed descriptor can achieve
surprisingly high performance on person re-identification.

2. Related Work
Feature design and distance metric learning are two key

components for person re-identification. In the feature de-
sign, several works have been conducted by focusing on
the characteristic properties of person images. Symmetry-
Driven Accumulation of Local Features (SDALF) [6] ex-
ploits the symmetric property of a person through obtain-
ing head, torso, and leg positions to handle view varia-
tions. Unsupervised salience learning [46] estimates rare

patches among different images, to perform matching of
rare-appearances such as rare-colored coats, baggages and
folders. Attribute based descriptors obtain lingual descrip-
tion of person images [17]. These works have been mainly
conducted on unsupervised settings.

In the recent half decade, a supervised approach, i.e.,
metric learning, has shown more impressive results in terms
of accuracies [31, 32, 33, 23, 42, 48]. The features used for
metric learning are rather simple compared to the features
for the unsupervised settings. For metric learning, the fea-
tures need not necessarily be robust or discriminative when
unsupervised matching is performed, however, it requires
to contain enough information within them. For example,
high dimensional features composed of densely sampled
color histograms, LBPs and SIFTs are often used [32, 42].
The design of features would largely affect the matching
accuracy of metric learning methods. Nevertheless, most of
the previous works focused on algorithm of metric learning
[22, 24, 33, 48], and only few works focused on the feature
design [23, 28, 43].

Our use of two-level (patch/region) statistics for person
re-identification is motivated by the recently proposed Lo-
cal Maximal Occurrence (LOMO) [23], which is a high di-
mensional representation of color and Scale Invariant Local
Ternary Pattern (SILTP) histograms. This method locally
constructs a histogram of pixel features, and then takes its
maximum values within horizontal strips to overcome view-
point variations while maintaining local discrimination. In-
deed, LOMO describes only mean information of pixel fea-
tures. Covariance-of-Covariance feature [36], where region
covariance is estimated over local patch covariances of pixel
features, motivated us to add covariance information in each
hierarchy.

Making use of mean information to enhance the co-
variance descriptor is motivated by several works, such
as Shape of Gaussians [10], Global Gaussian [30] and
Gaussians of Local Descriptors (GOLD) [37]. By ben-
efitting from the recent advances on Riemannian geome-
try, we treat a Gaussian distribution on a point of Sym-
metric Positive Definite (SPD) matrix manifold with the
same manner as [13, 19] and apply log Euclidean metric
and half-vectorization to flatten the manifold-valued data
as in the works [9, 37]. Though such a Gaussian coding
of low level pixel features is introduced into person re-
identification [27], previous Gaussian descriptors are not
constructed on a hierarchal manner.

Convolutional Neural Network (CNN) is one of the state-
of-the art recognition algorithms that leverage hierarchal
structure [16] and CNN has been recently adopted for per-
son re-identification [1, 21]. However, their accuracies are
not high compared to metric learning approaches, especially
in small sampled datasets such as VIPeR [12]. This is be-
cause the CNN requires a large number of labeled train-
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Figure 3. GOG descriptor: (a) For each region, we extract local
patches densely. (b) We then describe each of local patches via a
Gaussian distribution of pixel features, we refer to these Gaussians
as patch Gaussians. (c) Each of patch Gaussians is flattened and
vectorized by considering the underlining geometry of Gaussians.
(d) Then the patch Gaussians inside a region are summarized into
a region Gaussian. (e) We further flatten the region Gaussian and
create a feature vector. (f) Finally, the feature vectors extracted
from all regions are concatenated into one vector.

ing samples to obtain good performance. Although several
descriptors are proposed by focusing on CNN like hierar-
chy [8, 39], they require learning processes for feature ex-
traction in each hierarchy. In contrast, our descriptor re-
quires no learning process because in each hierarchy, our
descriptor describes regions via mean and covariance esti-
mations which are not involved in learning.

3. Hierarchical Gaussian Descriptor
We outline the proposed hierarchal Gaussian descriptor

named GOG in Fig. 3. To achieve the feature representation
of a person image, we adopt a part-based model [35]. We
assume that G regions of a person image are given in ad-
vance, which are typically horizontal stripes of the image.
The proposed descriptor returns a feature vector of the re-
gions. The rest of this section describes the details of the
descriptor.

3.1. Pixel features

Let us focus on one of the G regions of a person image.
To describe the local structure of the region, we densely
extract squared (k × k pixels) patches with the p pixel in-
tervals (Fig 3 (a)). In order to characterize each pixel in the
patch, we extract d dimensional feature vector f i for every
pixel i. The feature vector can be any type of features, such
as color, intensity, gradient orientation and filter response.

Since the number of pixels in each patch is small, the di-
mension d is preferable to be low for robustly estimating the
covariance matrices of patch Gaussians in the next step. In
this work, we extract 8-dimensional pixel features defined
as:

f i = [y,M0◦ ,M90◦ ,M180◦ ,M270◦ , R,G,B]T , (1)

where y is the pixel location in the vertical direction,
Mθ∈{0◦,...,270◦} are the magnitudes of pixel intensity gra-

dient along four orientations, and R,G,B are color channel
values. Each dimension of f i is linearly stretched to the
range [0, 1] for equalizing the scales of the different feature
values.

The pixel location is introduced to leverage spatial in-
formation within each region. The use of only vertical im-
age location comes from the analysis in [27]; the person
images tend to be well aligned in vertical direction while
pose/viewpoint change causes a large misalignment in the
horizontal direction. Note that one would like to set yi from
the top (or center) of the current region as in [9]. However,
each pixel belongs to multiple regions and such a setting
increases computational complexity. Since person images
are coarsely aligned, we directly set yi from the top of the
image.

The gradient information is introduced to describe tex-
tural information of clothes. Gradient orientation O =
arctan(Iy/Ix) is calculated from x and y derivatives Ix, Iy
of intensity I . We quantize the orientation into four bins;
Oθ∈{0◦,90◦,180◦,270◦}. To complement the loss of informa-
tion by the quantization, we use soft voting into nearby two
orientation bins. The voting weights are linearly determined
from the distances from the quantized orientations as in the
GO vector in [15]. To focus on high gradient edges, we
multiply the gradient magnitude M =

√
I2y + I2y to the quan-

tized orientation Oθ and obtain the oriented gradient mag-
nitude; Mθ = MOθ.

Color information is the most important cue for person
re-identificaiton. We use the color channel values of the
most basic color space: RGB. Other color spaces, e.g., Lab,
HSV and YCbCr, might be used. In fact, we will extend our
pixel features in different color spaces (Sec. 3.5).

3.2. Patch Gaussians

After we extract the pixel features inside a patch, we then
summarize them via the most classical parametric distribu-
tion which has mean and covariance as parameters: Gaus-
sian distribution (Fig. 3 (b)). For every patch s, we model
feature vectors as the patch Gaussian N (f ;µsΣs) defined
as,

N (f ;µs,Σs) =
exp

(
− 1

2 (f − µs)
TΣ−1

s (f − µs)
)

(2π)d/2|Σs|
, (2)

where | · | is the determinant of a matrix, µs is the mean
vector and Σs is the covariance matrix of the sampled
patch s. The mean vector and the covariance matrix are
respectively estimated by: µs = 1

ns

∑
i∈Ls

f i and Σs =
1

ns−1

∑
i∈Ls

(f i −µs)(f i −µs)
T , where Ls is the area of

the sampled patch s and ns denotes the number of pixels in
Ls.

Note that the densely sampled mean vectors and covari-
ance matrices can be efficiently calculated through integral
images [41]. Since regions can be overlapped, we construct



the integral images of pixel features for an overall person
image rather than creating them for each region.

For a more precise description of distributions, Gaussian
Mixture Model (GMM) might be used. Since a local patch
is expected to consist of a small number of colors/textures,
we assume that the unimodal Gaussian is sufficient for de-
scribing the distribution of its pixel features.

3.3. Tangent space mapping and half vectorization

As we will explain in the next subsection, our descriptor
is a summarized representation of patch Gaussians in a re-
gion. For this summarization, mathematical operations such
as mean or covariance of the Gaussian are required.

From the viewpoint of information geometry, the space
of probability distribution is considered as a Riemannian
manifold where the Euclidean operation cannot be applied
directly [2]. A Riemannian manifold can be locally flat-
ten into a Euclidean space by projecting it into a tangent
space endowed with Riemannian metric. The space of the
Symmetric Positive Definite (SPD) matrix is also consid-
ered as a Riemannian manifold and this space is recently
well understood. The log Euclidean metric [3] for SPD ma-
trix provides a solid way to map a point on the manifold to
a Euclidean tangent space via a matrix logarithm.

To leverage the benefit of the log Euclidean metric, we
embed the patch Gaussians in the SPD matrix in the similar
manner to the work [19]. From an analysis in the infor-
mation geometry literature [25], the space of d-dimensional
multivariate Gaussians can be embedded into the d + 1 di-
mensional SPD matrices space denoted by Sym+

d+1. We
represent the d-dimensional patch Gaussian N (µs,Σs)
into Sym+

d+1 as P s:

N (f ;µs,Σs) ∼ P s = |Σs|−
1

d+1

[
Σs + µsµ

T
s µs

µT
s 1

]
.

(3)
For more detailed theory of this embedding, one may refer
the literature [25].

The covariance matrix of the local patch often becomes
singular due to the lack of sufficient number of pixels within
the patch. We avoid this problem by adding the identity
matrix Id to Σs with a small positive constant value, ϵs, as
Σs ← Σs + ϵsId.

In order to describe the region distribution in a Euclidean
operation, we then map each of patch Gaussians P s into a
tangent space via a matrix logarithm (Fig. 3 (c)).

We then store the upper triangular part of the mapped
matrix as a vector since the matrix is symmetric. By con-
sidering the off-diagonal entries as being counted twice
during the norm computation [41], the matrix of patch
Gaussian P s becomes m = (d2 + 3d)/2 + 1 dimen-
sional vector gs, defined as, gs = vec(log(P s)) =
[bs(1,1),

√
2bs(1,2), · · · ,

√
2bs(1,d+1), bs(2,2),

√
2bs(2,3),

· · · , bs(d+1,d+1)]
T , where log(·) is the matrix logarithm op-

erator and bs(i,j) is the (i, j) element of Bs = log(P s).

3.4. Region Gaussian on tangent space

Due to the pose variation of person images, the positions
of local parts vary in different observations. Thus we sum-
marize the local patches into an orderless representation of
them. More specifically, we summarize the flattened patch
Gaussians in the previous section into a region distribution
(Fig.3 (d)). For this summarization, we also use a Gaussian
distribution that can describe not only covariance but also
mean. Again, GMM might be used to describe more pre-
cise distributions. However, matching among GMMs is not
a trivial problem [19] and will cause complexity to match
among region descriptors. The summarization with a Gaus-
sian distribution is performed by considering a spatial prop-
erty of patches as follows.

A person image often contains background regions
which significantly differ in places. To suppress the effect of
background regions, we introduce a weight for each patch
in a similar manner as for the weighted color histograms [6].
In most cases, the person is centered in each image; thus a
higher value is assigned to the patches which are closer to
the center y axis of an image: ws = exp(−(xs−xc)

2/2σ2)
where xc = W/2, σ = W/4. Here xs denotes the x co-
ordinate of the center pixel of patch s and W is the image
width. Then we define the weighted mean vector and co-
variance matrix as

µG =
1∑

s∈G ws

∑
s∈G

wsgs, (4)

ΣG =
1∑

s∈G ws

∑
s∈G

ws(gs − µG)(gs − µG)T , (5)

where G is the region in which the patch Gaussians are sum-
marized. Using the mean vector and covariance matrix, we
represent the region as the region Gaussian N (g;µG ,ΣG).

For matching among region descriptors, it is conve-
nient to flat the region Gaussian in the Euclidean space
since most of the matching methods such as metric learn-
ing are designed on a Euclidean space. For this purpose,
we embed m dimensional region Gaussian into m + 1 di-
mensional SPD matrices in the same manner as Eq.(3):
N (g;µG ,ΣG) ∼ Q where Q is a (m+ 1)× (m+ 1) SPD
matrix. Here the covariance matrix ΣG is regularized as
ΣG ← ΣG + ϵGIm. We then map Q into the tangent space
of Sym+

m+1 by using matrix logarithm and half-vectorize
it to form a (m2 + 3m)/2 + 1 dimensional feature vector,
which we denote z (Fig.3 (e)).

By extracting the region Gaussian for each of G regions,
we obtain feature vectors {zg}Gg=1. In order to maintain the
spatial location of these vectors, we concatenate them and
form a feature vector (Fig.3(f)). Then the feature represen-
tation of a person image becomes z = [zT

1 , .., z
T
G]

T .



3.5. Fusion descriptor of different color spaces

It has been proved that descriptors extracted from differ-
ent color spaces have complementary properties, and their
fusion improves re-identification accuracies [43].

To extract more color information in GOG descrip-
tors, we replace the RGB channel values in the pixel fea-
ture in Eq.(1) with three alternative color channels val-
ues {Lab, HSV, nRGB} and fuse their GOG descriptors.
Here the nRGB is the normalized color space (e.g., nR =
R/(R+G+B)). Since there is a redundancy in this space, we
only use {nR, nG} in this color space. Thus, the pixel
feature dimension of each {RGB, Lab, HSV, nRnG} color
space is d = {8, 8, 8, 7} and therefore the dimension of
patch Gaussian vector is m = {45, 45, 45, 36}.

We denote the GOG descriptor z extracted from the
Eq.(1) as GOGRGB, and the descriptors extracted from
the alternative color channels as GOGLab, GOGHSV and
GOGnRnG, respectively. The fusion is simply performed
by concatenating GOG descriptors on different pixel fea-
tures as GOGFusison = [GOGT

RGB, GOGT
Lab, GOGT

HSV,
GOGT

nRnG]T . Therefore, the dimensionality of the fusion
descriptor is 3 (color spaces) × 1081 ( = (452 + 3 ×
45)/2 + 1) × G (regions) + 1 (color space) × 703 ( =
(362 + 3× 36)/2 + 1) × G (regions).

3.6. Normalization of GOG

For high dimensional features, normalization is an im-
portant factor to improve their performance [34]. Since the
GOG descriptor is high dimensional, we normalize the de-
scriptor by using the L2 norm normalization, which is the
most widely adopted normalization.

We observed that there exist dimensions which have
commonly high/small values among different images within
the GOG descriptor. This is because we use pixel features
which has different properties of its distributions, e.g., gra-
dient magnitude distributes sparsely in images, and color
intensity distributes more uniformly. In such a case, the co-
sine distance, i.e., the Euclidean distance after the normal-
ization, would be dominated by the biased dimensions.

To remedy such biased dimensions, we remove the mean
vector of training samples before normalizing the feature
vector. The normalization of GOG becomes as follows:

z = (z − z)/∥z − z∥2, (6)

where z is the sample mean of the GOG descriptors. For
the fusion descriptor, we normalize each of the GOG de-
scriptors extracted on four color spaces before concatenat-
ing them.

For the Bag-of-Words representation, similar normaliza-
tion is proposed to reflect co-missing words for cosine sim-
ilarity [14]. In contrast, we employ it to remedy the effect
of biased dimensions.

4. Experiments
4.1. Setup

We evaluate the proposed descriptor on five bench-
mark datasets: VIPeR [12], CUHK01 [20], GRID [26],
PRID450S [33] and CUHK03 [21]. We resize each image
in the dataset to 128×48 pixels to facilitate the evaluation
with the common parameters of the descriptor.

We extract the GOG descriptor from seven overlapping
horizontal strips (G = 7). Each of the strips consists of
32×48 pixels. By considering the trade-off between the
computational time and the predictive accuracy, we extract
local patches at two-pixel intervals (p = 2) in each region.
We set the local patch size to 5× 5 pixels (k = 5). Follow-
ing the setting of [13], we set the regularization parameter
for region Gaussian as ϵG = ϵ0Tr(Σ

G). Here Tr(·) is the
trace norm of the matrix. In several patch Gaussians, the
trace norm of covariance matrix becomes nearly zero when
the patch contains only nearly equal pixel values. Thus, we
set a small constant to ϵs for patch Gaussian, then we have
ϵs = ϵ0max(Tr(Σs), 10

−2). We set ϵ0 = 10−3 for both
patch and region Gaussians.

We evaluate the proposed descriptor with a distance met-
ric learning, Cross-view Quadratic Discriminant Analysis
(XQDA) [23]. The KISS Metric learning (KISSME) [33] is
commonly used in person re-identification. However, it is
more sensitive to dimensionality of subspace where the dis-
tance metric is learned. The XQDA learns a discriminative
subspace and a distance metric simultaneously, and is able
to select the optimal dimensionality automatically.

4.2. Performance analysis on VIPeR

In this section, we compare the performance within our
approach using VIPeR dataset [12]. The VIPeR is a chal-
lenging dataset containing 632 person image pairs from two
camera views. The testing protocol is to split the num-
ber of the person into half, 316 for training 316 for test-
ing. We conduct the evaluation procedure for 10 splits
and report the average Cumulative Matching Characteristic
(CMC) curves.

As a default, we use RGB color space for pixel features
(GOGRGB) and the normalization in Sec. 3.6.
Distribution modeling: We compare other distribution
models to GOG in Fig. 4(a). The Mean, Cov and Gauss are
global distribution descriptors of pixel features within each
region. The Cov-of-Cov, Cov-of-Gauss and GOG are hi-
erarchical distribution descriptors. The tangent space map-
ping using log-Euclidean and half vectorization are applied
for all descriptors except Mean. The regularization param-
eter of the covariance matrix is set as the same manner as
GOG. The concatenated feature vector of the 7 regions is
used for all descriptors. For a fair comparison, we adopted
the weighted pooling for all descriptors.



First, we compare the global distribution descriptors.
The rank-1 rates of Mean and Cov are 11.6% and 23.6%,
respectively. By adding the mean and the covariance in-
formation, Gauss performs 7.7% better than Cov in rank-1
rate. This result confirms the importance of the use of both
mean and covariance information of pixel features.

We then compare the hierarchical distribution descrip-
tors. The Cov-of-Cov uses covariance matrix in both patch
and region modeling, which is similar to [18, 36]. It per-
forms 4.2% better than Cov in rank-1 rate. The Cov-of-
Gauss uses Gaussian for patch and covariance matrix for
region modeling. It improves the performance of Gauss by
9.7% in rank-1 rate. These results confirm the importance
of covariance information of patch Gaussians. By adding
mean information in region modeling, GOG improves the
performance of Cov-of-Gauss by 1.3% in rank-1 rate.
Tangent space mapping: We compare the effect of flat-
tening the manifold in Fig. 4 (b). The None shows the
results when the tangent space mapping is not applied for
constructing the vector of both region and patch Gaussians.
The 1st and 2nd map respectively shows the results when
the mapping is applied to one of the patch or region Gaus-
sians. When either the 1st or 2nd mapping is applied, rank-1
rates increase by 16.3% and 9.1%, respectively. By apply-
ing the both mappings, the rank-1 rate increase by 34.7%.
From these results, we can see that the consideration of the
underlying geometry of Gaussian is necessity.
Normalization: We compare normalization in Fig. 4 (c).
Due to the dimensions which have commonly high/small
values among samples, the standard L2 norm degrades per-
formance largely, 14.3% in rank-1 rate. We also compare
the standardization and PCA whitening. For PCA whiten-
ing, we varied the dimension of PCA and the best results are
reported. After applying the standardization or the whiten-
ing, L2 norms are normalized. The standardization drops
rank-1 rate by 1.9% and the improvement by PCA whiting
is small, 1.0% in rank-1 rate. We suspect these methods
magnify the noise of dimensions where the standard devia-
tions are small. We can see that the proposed normalization
is most effective; it increases rank-1 rate by 5.1%.
Pixel features: We compare the components within pixel
features in Fig. 4 (d). The color channel information, RGB,
is more effective than the gradient magnitude information,
Mθ, when comparing only these two components. By com-
bining these two components, MθRGB achieves 12.6%
better rank-1 rate than RGB alone. The use of vertical
pixel location y also improves the performance, e.g., rank-1
rate of yMθRGB is better than that of MθRGB by 4.6%.
The Fusion of GOG descriptors extracted from four color
spaces is 7.1% better than yMθRGB in rank-1 rate 1.

1We also compared the GOG descriptor with pixel features used in
other articles; 11-d [5] and 7-d [27] pixel features. In these cases, rank-
1 identification rates were 35.4% and 39.7%, respectively.
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Figure 4. Performance analysis of the GOG descriptor.

4.3. Performance comparison

We compare the GOG descriptor with other descrip-
tors using the four datasets: VIPeR [12], CUHK01 [20],
GRID [26] and PRID450S [33], respectively contains 632,
971, 250 and 450 images of individuals captured in two dis-
joint camera views.

The VIPeR, GRID and PRID450S datasets contain one
image for each person in one camera view and CUHK01
contains two images. We conduct experiments with the sin-
gle shot setting. Following the conventions [23, 31, 43],
we randomly divide each dataset into training and test sets
containing half of the available individuals. The number of
probe images is equal to the gallery images in all datasets
except GRID. For GRID, we add additional 775 images that
do not belong to the person of 250 image pairs into the
gallery set. We repeat the above evaluation procedure 10
times and obtain the average rank scores and also report the
Proportion of Uncertainty Removed (PUR) [32] which is
the measure to evaluate the whole ranks of CMC curve.
Other meta descriptors: We compare the GOG de-
scriptor with other meta-descriptors: Heterogeneous Auto-
Similarities of Characteristics (HASC) [7], Local Descrip-
tors encoded by Fisher Vector (LDFV) [28], Second-order
Average Pooling (2AvgP) [9] and GOLD [37].

The HASC is composed of the covariance descriptor and
the Entropy and Mutual Information (EMI) descriptor. The
EMI descriptor captures the non-linear dependency within
pixel features and it has equal dimensionality to the covari-
ance descriptor. The GOLD describes an image region by
mean vector and covariance matrix. The covariance ma-
trix is flattened by log-Euclidean and half-vectorization is
applied. The vectors of mean and covariance are concate-
nated into a feature vector. The 2AvgP describes an image



Table 1. Comparison with XQDA metric learning (CMC@rank-r and PUR). (a) GOG descriptor. (b) Other meta descriptors. (c) Other
descriptors for person re-identification. The best scores on (a) are shown in red, (b) and (c) are shown in blue.

Pixel # of Patch VIPeR CUHK01 PRID450S GRID
Methods feature Region Dim. Weight r=1 r=10 r=20 PUR r=1 r=10 r=20 PUR r=1 r=10 r=20 PUR r=1 r=10 r=20 PUR

(a)
GOGFusion Fusion 7 27,622 Y 49.7 88.7 94.5 63.6 57.8 86.2 92.1 66.8 68.4 94.5 97.8 73.9 24.7 58.4 69.0 45.9
GOGRGB yMθRGB 7 7,567 Y 42.3 85.3 92.8 58.8 55.8 85.5 91.3 65.8 63.6 91.5 96.2 69.8 22.8 52.3 64.1 43.1

GOGFusion Fusion 7 27,622 N 47.0 89.2 94.8 62.6 54.4 83.2 89.7 63.3 61.6 91.1 96.5 68.6 24.6 53.8 63.8 44.1

Cov-of-Cov [36] Fusion 7 16,828 N 33.9 76.6 87.7 50.9 40.9 72.5 81.1 52.1 47.0 83.4 91.6 56.8 16.6 45.0 55.2 36.2

(b)

GOLD [37] Fusion 7 1,169 N 27.1 66.5 77.7 41.9 35.3 65.2 74.2 44.5 40.5 73.8 82.2 46.7 10.9 29.2 37.4 25.9
2AvgP [9] Fusion 7 952 N 28.8 68.5 79.2 43.3 36.1 68.1 76.3 46.2 44.7 75.8 83.8 49.8 12.9 36.7 47.4 30.3
HASC [7] Fusion 7 1,904 N 30.9 70.6 81.8 46.0 38.6 68.7 77.1 48.4 41.8 76.3 85.2 49.5 12.9 35.6 47.3 31.2
LDFV [28] Fusion 7 6,944 N 25.3 66.8 79.4 42.4 36.4 71.0 80.3 49.1 32.1 66.9 77.6 40.3 16.2 41.9 53.1 35.1
Cov [40] Fusion 7 952 N 26.9 65.8 77.1 41.2 34.5 64.5 73.6 43.8 40.4 73.4 82.1 46.4 10.6 29.0 36.7 25.5

(c)
LOMO [23] CH+SILTP 40 26,960 N 41.1 82.2 91.1 56.8 49.2 84.2 90.8 62.4 62.6 92.0 96.6 69.4 17.9 46.3 56.2 36.9

CH+LBP [42] CH+LBP 75 32,250 N 27.7 69.3 82.4 45.0 31.3 70.4 81.5 48.8 21.5 60.8 74.4 35.0 16.2 45.0 57.1 36.7
gBiCov [29] BIF - 5940 N 22.8 64.0 77.8 40.4 24.1 55.6 67.2 37.6 27.9 67.2 76.8 38.6 10.6 30.4 41.4 28.2

Table 2. Comparison of state-of-the-art results (CMC@rank-r). The best and second best scores are respectively shown in red and blue.
VIPeR CUHK01 (M=1) CUHK01 (M=2) PRID450S GRID

Methods Reference r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20
GOGFusion+XQDA Ours 49.7 79.7 88.7 94.5 57.8 79.1 86.2 92.1 67.3 86.9 91.8 95.9 68.4 88.8 94.5 97.8 24.7 47.0 58.4 69.0

MetricEnsemble CVPR2015 [31] 45.9 77.5 88.9 95.8 53.4 76.4 84.4 90.5 - - - - - - - - - - - -
LOMO+XQDA CVPR2015 [23] 40.0 - 80.5 91.1 49.2 75.7 84.2 90.8 63.2 - 90.8 94.9 62.6 85.6 92.0 96.6 16.6 - 41.8 52.4

SCNCD ECCV2014 [43] 37.8 68.5 81.2 90.4 - - - - - - - - 41.6 68.9 79.4 87.8 - - - -
Semantic CVPR2015 [38] 31.1 68.6 82.8 94.9 32.7 51.2 64.4 76.3 - - - - 43.1 70.5 78.2 86.2 - - - -
SalMatch ICCV2013 [45] 30.2 52 65 - 28.5 45 55 - - - - - - - - - - - - -

MLFL CVPR2014 [47] 29.1 - 65.9 70.9 34.3 55 65 75 - - - - - - - - - - - -

region by the zero-mean covariance matrix, and applies log-
Euclidean and half-vectorization to obtain a feature vector.
The LDFV encodes pixel features using Fisher Vector cod-
ing, which encodes difference of pixel features from pre-
trained GMM means. By following the recommended set-
ting [28], we set the number of GMM components to 16 2.

We focus on the encoding process of pixel features only,
and discard other options on the above descriptors, such as
the spatial pyramid in GOLD. We extract each of the meta-
descriptors from the same horizontal strips as GOG. The
descriptor extracted from the 7 regions are concatenated. As
well as GOG, we use the fusion approach that concatenates
the meta descriptors extracted from 4 pixel feature vectors
into one vector. For normalization, the mean removal and
the L2 normalization are applied to each descriptor since we
found it generally improves their performances.

We list the performance of GOG and the compared meta
descriptors in Table 1 (a) and (b). All the descriptors in (b)
except Cov-of-Cov are not hierarchical descriptors, which
discard local structures of regions. The descriptors which
use single layered distribution (Cov, HASC, LDFV, 2AvgP
and GOLD) have similar performances. On the other hand,
Cov-of-Cov clearly outperforms them. These results con-
firm the effectiveness of the hierarchical distribution. The
GOG outperforms Cov-of-Cov, since it also contains the
mean information, which is absent in covariance.

2 It is reported that their 7-d pixel feature produces much better results
than FV on the SIFT descriptors which is widely used in image classifi-
cation [34]. When their pixel features were adopted to the LDFV in our
settings, the rank1 recognition rates were 24.8%, 28.2%, 20.2% and 10.5%
in VIPeR, CUHK01, PRID450s and GRID dataset, respectively.

Descriptors for metric learning: We compare the GOG
descriptor with other descriptors used in metric learning
for person re-identification: LOMO [23], Color Histogram
(CH)+LBP [42] and gBiCov [29]. For these descriptors, we
use the source codes provided by the authors. The default
parameters of the codes are used for LOMO and gBiCov.
Xiong et al. [42] conducted experiments using different
region numbers to extract 28 bin color histogram and 2 uni-
form LBPs. Among them, we use 75 regions that was the
best setting. For a fair comparison, the same normalization
as GOG and XQDA metric learning are commonly applied.

The experimental results are shown in the Table 1 (c). It
can be shown that GOGFusion clearly outperforms LOMO
with nearly equal dimensionality. The rank-1 identification
rates of GOGFusion are 8.6%, 8.6%, 5.8% and 8.1% bet-
ter in VIPeR, CUHK01, PRID450s and GRID datasets, re-
spectively. Although, LOMO and CH+LBP use more spa-
tial regions and high dimensional pixel features, the GOG
descriptor outperforms these descriptors by a large margin.
When the patch weights are used, GOGRGB, which is ex-
tracted from pixel features with only RGB color informa-
tion, outperforms LOMO with a much smaller dimension-
ality. The superiority of the GOG descriptor comes from
its hierarchal use of the mean and covariance information
of pixel features, whereas LOMO uses only the mean infor-
mation.
State-of-the-arts: In Table 2, we compare the perfor-
mance of the reported results on the state-of-the-art meth-
ods, including MidLevel Filter Learning (MLFL) [47],
Salience Matching (SalMatch) [45] , SCNCD [43], Se-
mantic attribute representation [38], Metric Ensemble [31]



Table 3. State-of-the-art results on CUHK03 (CMC@rank-r).
Labeled Detected

Methods Reference r=1 r=5 r=10 r=1 r=5 r=10
GOGFusion+XQDA Ours 67.3 91.0 96.0 65.5 88.4 93.7

MetricEmsemble CVPR2015 [31] 62.1 89.1 94.3 - - -
LOMO+MLAPG ICCV2015 [24] 58.0 - - 51.2 - -
LOMO+XQDA CVPR2015 [23] 52.2 - - 46.3 - -
ImprovedDeep CVPR2015 [1] 54.7 88.3 93.3 45.0 75.7 83.0

DeepReID CVPR2014 [21] 20.7 51.7 68.3 19.9 49.0 64.3

(a) Labeled (b) Detected

Figure 5. Example images from CUHK03 dataset [21]. Images in
the same column represent the same person.

and LOMO [23] 3. It can be observed that the GOG de-
scriptor achieves the new state-of-the-art results, 49.7%,
57.8%, 67.3%, 68.4% and 24.7% of rank-1 rate on VIPeR,
CUHK01 (M=1), CUHK01 (M=2), PRID450S and GRID
dataset, respectively. Since GOG and LOMO adopt the
common metric learning, it is clear that the success of our
approach comes from our design of a better feature descrip-
tor. The metric ensemble [31] uses four base metrics, each
of them is learned on SIFT, color histogram + LBP, covari-
ance descriptor and CNN. Our descriptor also outperforms
such an ensemble of different descriptors.

4.4. Comparison on automatic detected dataset

To show the generality of the GOG descriptor on a large
and automatic detected dataset, we compare the perfor-
mances on CUHK03 dataset [21]. The CUHK03 dataset in-
cludes 13,164 images of 1,360 persons, captured by disjoint
camera views. Each person in the dataset has in average
4.8 images in each view. In addition to manually cropped
person images, the dataset contains images detected by the
state-of-the-art person detector. Therefore, realistic varia-
tions such as misalignment, occlusions and missing body
parts are contained in person images. Fig. 5 shows some
example images of the dataset.

We evaluate the GOG descriptor with the common set-
ting to previous works [1, 21, 23, 24, 31]. Namely, we di-
vide the images of the dataset into 1,160 persons for the
train set and 100 persons for the test set. The random divi-
sion are repeated 20 times and we report the average results.

Table 3 lists the performance comparison with the state-
of-the-art results. The GOGFusion achieves 67.3% and

3 The experimental setting of CUHK01 (M=1) is the single shot setting,
which is common to [31] and CUHK01 (M=2) is the multi shot setting in
[23]. The results of the CUHK01(M=1) and PRID450S datasets of LOMO
are obtained from the code provided by the author.

Table 4. Time of feature extraction (seconds/image).
LOMO [23] CovRGB GOGRGB GOGFusion gBiCov [29]

0.016 0.021 0.34 1.34 7.8

65.5% rank-1 identification rates with the labeled and the
automatically detected bounding boxes, respectively, which
clearly outperforms the state-of-the-art LOMO features [23,
24] and deep learning methods [1, 21] by a large margin.
The performance decrease in rank-1 rate between labeled
and detected data is 1.8% in the case of GOG, which is more
than three times smaller than 5.9% of LOMO+XQDA. This
might be because the LOMO feature is extracted from nar-
rower horizontal stripes than regions of GOG. High dimen-
sionality of LOMO is partially due to such a large number
of narrow horizontal strips. In contrast, the high dimen-
sionality of GOG is due to the Gaussian matrix, which is
composed of the mean vector and the covariance matrix.
Such a dimension enhancement of pixel features does not
decrease the robustness to misalignment, and thus the GOG
descriptor is more preferable in realistic situations with mis-
alignments of person images.

4.5. Running time

The GOG descriptor is implemented in Matlab 4 with
MEX function for calculation of covariance matrices, and
run on a PC equipped with Intel Xeon E5-2687W @3.1GHz
CPU. The running times of the descriptors are shown in Ta-
ble 4. The listed times are the average of all images of the
VIPeR dataset. The matching cost of GOGFusion is nearly
equal to LOMO since their dimensionalities are almost the
same. The GOG descriptor is about 16 times slower than the
covariance descriptor when the same pixel feature is used,
and GOGFusion is about 84 times slower than LOMO. How-
ever, it is 5.8 times faster than gBiCov. Considering other
methods which require more computational cost [6, 45, 47],
the running time of the GOG descriptor is still appealing.

5. Conclusions
We have proposed a novel hierarchical Gaussian descrip-

tor for person re-identification. The proposed descriptor
models both mean and covariance information of pixel fea-
tures in each of the patch and region hierarchies. The results
of our extensive experiments revealed that the proposed de-
scriptor can achieve surprisingly high performance which
improves the state-of-the-art performances on five public
datasets.

In our future work, we plan to investigate the deep hier-
archy of Gaussian descriptors to describe more in-depth the
hierarchical structure of person appearances. In addition,
we would like to test ensembles of the GOG descriptors
extracted from different kinds of pixel features for further
improvements of identification accuracies.

4http://www.i.kyushu-u.ac.jp/˜matsukawa/ReID.html
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