Person Re-Identification via Discriminative Accumulation of Local Features

<u>Tetsu Matsukawa</u>¹ Takahiro Okabe² Yoichi Sato¹

¹The University of Tokyo ²Kyushu Institute of Technology

22nd INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION 2014

Person Re-Identification

• Search same person in different camera

Applications suspected person search/trajectory analysis

Challenges large intra-personal variations

e.g. illumination/pose/occlusion/background

Two Main Steps

Two Main Steps

• Extract feature descriptor Cam A Cam B • Match feature descriptor distance calculation

Π

Related Work of Re-Identification

- Extract feature descriptor
 - Distinctive but robust to pose variation
 - Dense color histograms [Hirzer12]
 - Symmetric driven accumulation [Bazzani13]
 - *Hierarchical gaussian map* [Hu13]
 - • •
- Match feature descriptor
 - Supervised learning of distance metric
 - LMNN [Dikmen10]
 - RDC [Zheng12]
 - *RPLM* [Hirzer12]
 - *KISSME* [Kostinger12]
 - *LF* [Pedagadi13]
 - • •

Bazzani13

Key Observation

• There exists discriminative positions commonly on dataset

tend to be backgroundtend to be distinguish part

Conventional Feature Form

Concatenated vector is used

Conventional Feature Form

- Concatenated vector is used
 - The discriminative positions are separately analyzed for each of feature dimensions (e.g. color histogram bin)

Our Main Idea

• Construct feature matrix

• Analyze shared position importance for all feature dimensions

• The parameter to be learned is small ---- less over-fitting

Related Work

- Fisher Weight Map (FWM) [Shinohara04]
 - Discriminatively learned weight maps for weighted histogram for facial expression recognition

Flow of the Proposed Method

Linear Form of a Weighted Histogram [Shinohara04]

Discriminative power of global histogram is low

Weighted Histograms in Local Areas

• Accumulate into local areas to maintain different body parts

Mahalanobis Distance Metric Learning

• Squared Mahalanobis-like distance

$$D_M^2(\boldsymbol{x}_i, \boldsymbol{x}_j) = (\boldsymbol{x}_i - \boldsymbol{x}_j)^T \boldsymbol{M} (\boldsymbol{x}_i - \boldsymbol{x}_j)$$

Estimate *M* to rescale the feature vector
M = Σ^{-1} : Mahalanobis distance

Our case

- Positive Semi-Definite Matrix $oldsymbol{M} = oldsymbol{L}oldsymbol{L}^T$
- Definition of feature vector $oldsymbol{x} = oldsymbol{F}oldsymbol{w}$

$$D_{w,L}^{2}(\boldsymbol{F}_{i}, \boldsymbol{F}_{j}) = \|\boldsymbol{L}^{T}\boldsymbol{F}_{i}\boldsymbol{w} - \boldsymbol{L}^{T}\boldsymbol{F}_{j}\boldsymbol{w}\|_{2}^{2}$$

 > Estimate { $\boldsymbol{w}, \boldsymbol{L}$ } to transform the feature matrix

Average Neighborhood Margin Maximization [Wang09]

• Explore discriminative information locally on sample space

Average Neighborhood Margin

$$\begin{split} \gamma_i = \sum_{\substack{j \in \mathcal{N}_i^D \\ \text{to different persons}}} \frac{D_{w,L}^2(\boldsymbol{F}_i, \boldsymbol{F}_j)}{|\mathcal{N}_i^D|} - \sum_{\substack{j \in \mathcal{N}_i^S \\ \text{to same person}}} \frac{D_{w,L}^2(\boldsymbol{F}_i, \boldsymbol{F}_j)}{|\mathcal{N}_i^S|} \end{split}$$

Optimization Problem

• Consider multiple pairs of weight map and metric $\{m{w}_k,m{L}_k\}_{k=1}^K$

• Objective
$$\sum_{k=1}^{K} J(\boldsymbol{w}_k, \boldsymbol{L}_k) = \sum_{i=1}^{N} \sum_{k=1}^{K} \gamma_{i,k}$$
 : summing up margins of all training samples and pairs

• Optimization problem becomes:

$$\begin{aligned} \max & \sum_{k=1}^{K} J(\boldsymbol{w}_{k}, \boldsymbol{L}_{k}) \\ s.t. & \boldsymbol{W}^{T} \boldsymbol{W} = \boldsymbol{I}, \\ & \boldsymbol{L}_{k}^{T} \boldsymbol{L}_{k} = \boldsymbol{I}, \ k = 1, ..., K \end{aligned} i un-correlate of weight map \\ & \boldsymbol{L}_{k}^{T} \boldsymbol{L}_{k} = \boldsymbol{I}, \ k = 1, ..., K \end{aligned}$$

- > Difficult to get the global solution
- Solve it by a greedy algorithm for approximation

Greedy Solution

- Separate into K steps and then sequentially solve them
 - Optimization problem of k-th step

$$\begin{array}{c} \max & J(\boldsymbol{w}_k, \boldsymbol{L}_k) & : \text{ optimize k-th pair} \\ s.t. & \boldsymbol{w}_k^T \boldsymbol{w}_k = 1, \\ \hline & \boldsymbol{w}_k^T \boldsymbol{w}_m = 0, \ m = 1, ..., k-1, \\ & \boldsymbol{L}_k^T \boldsymbol{L}_k = \boldsymbol{I}. \end{array} \\ \begin{array}{c} \text{un-correlate to learned} \\ \text{weight maps} \end{array} \\ \end{array}$$

$$\boldsymbol{F}'_i \leftarrow \boldsymbol{F}_i - \sum_{m=1}^{k-1} \left\{ (\boldsymbol{1}_d \otimes \boldsymbol{w}_m^T) \odot (\boldsymbol{1}_s^T \otimes \boldsymbol{F}_i \boldsymbol{w}_m) \right\} \\ \otimes : \text{kroneker product} \\ \odot : \text{element-wise product}$$

• Simplified optimization problem of k-th step

$$\begin{array}{ll} \max & J'(\boldsymbol{w}_k, \boldsymbol{L}_k) \\ s.t. & \boldsymbol{w}_k^T \boldsymbol{w}_k = 1, \\ & \boldsymbol{L}_k^T \boldsymbol{L}_k = \boldsymbol{I}. \end{array} \succ \text{Solve it by alternative optimization} \end{array}$$

Alternative Optimization for k-th Step A

Repeat the steps A) and B) several times

A) Optimize $oldsymbol{L}_k$ by fixing $oldsymbol{w}_k$

- Transform training feature matrices: $\{m{x}_i = m{F}_i'm{w}_k\}_{i=1}^N$
- Search neighborhood sets for each sample
- Optimization problem becomes:

$$\begin{split} \boldsymbol{L}_{k}^{*} &= \operatorname*{argmax}_{\boldsymbol{L}_{k}} Tr\{\boldsymbol{L}_{k}^{T}(\boldsymbol{\Sigma}_{D}^{w_{k}}-\boldsymbol{\Sigma}_{S}^{w_{k}})\boldsymbol{L}_{k}\}s.t.\boldsymbol{L}_{k}^{T}\boldsymbol{L}_{k} = \boldsymbol{I},\\ \text{where} \quad \boldsymbol{\Sigma}_{D}^{w_{k}} &= \sum_{i=1}^{N}\sum_{j\in\mathcal{N}_{i,k}^{D}}\frac{(\boldsymbol{x}_{i}-\boldsymbol{x}_{j})(\boldsymbol{x}_{i}-\boldsymbol{x}_{j})^{T}}{|\mathcal{N}_{i,k}^{D}|}\\ \boldsymbol{\Sigma}_{S}^{w_{k}} &= \sum_{i=1}^{N}\sum_{j\in\mathcal{N}_{i,k}^{S}}\frac{(\boldsymbol{x}_{i}-\boldsymbol{x}_{j})(\boldsymbol{x}_{i}-\boldsymbol{x}_{j})^{T}}{|\mathcal{N}_{i,k}^{S}|}\\ \text{Solve it by eigen value problem: } (\boldsymbol{\Sigma}_{D}^{w_{k}}-\boldsymbol{\Sigma}_{S}^{w_{k}})\boldsymbol{L}_{k} = \lambda\boldsymbol{L}_{k} \end{split}$$

Alternative Optimization for k-th Step B

- Repeat the steps A) and B) several times
- B) Optimize $oldsymbol{w}_k$ by fixing $oldsymbol{L}_k$
 - Transform training feature matrices: $\{ \boldsymbol{Y}_i = \boldsymbol{L}_k^T \boldsymbol{F}_i' \}_{i=1}^N$
 - Search neighborhood sets for each sample
 - Optimization problem becomes:

$$\begin{split} \boldsymbol{w}_{k}^{*} &= \arg\max_{\boldsymbol{w}_{k}} \boldsymbol{w}_{k}^{T} \big(\boldsymbol{\Sigma}_{D}^{L_{k}} - \boldsymbol{\Sigma}_{S}^{L_{k}} \big) \boldsymbol{w}_{k} \quad s.t. \; \boldsymbol{w}_{k}^{T} \boldsymbol{w}_{k} = 1 \\ \text{where} \quad \boldsymbol{\Sigma}_{D}^{L_{k}} &= \sum_{i=1}^{N} \sum_{j \in \mathcal{N}_{i,k}^{D}} \frac{(\boldsymbol{Y}_{i} - \boldsymbol{Y}_{j})^{T} (\boldsymbol{Y}_{i} - \boldsymbol{Y}_{j})}{|\mathcal{N}_{i,k}^{D}|} \\ \boldsymbol{\Sigma}_{S}^{L_{k}} &= \sum_{i=1}^{N} \sum_{j \in \mathcal{N}_{i,k}^{S}} \frac{(\boldsymbol{Y}_{i} - \boldsymbol{Y}_{j})^{T} (\boldsymbol{Y}_{i} - \boldsymbol{Y}_{j})}{|\mathcal{N}_{i,k}^{S}|} \\ \text{Solve it by eigen value problem:} \; \big(\boldsymbol{\Sigma}_{D}^{L_{k}} - \boldsymbol{\Sigma}_{S}^{L_{k}} \big) \boldsymbol{w}_{k} = \gamma \boldsymbol{w}_{k} \end{split}$$

Experiments

• Three types of visual feature extracted from 15x15 grid cells

- HSV color histogram: 24 dimension/cell
- Gradient orientation histogram in YBbCr: 24 dimension/cell
- Texture (13 Schmid, 6 Gabor) histogram: 152 dimension/cell
- Show generality with four public datasets

Comparison1 Accumulation Areas

- More areas than global histogram are better
- Horizontal strips are better than vertical strips
- Used 6x1 as default setting

Comp.2 Number of Weight Map/Metric Pairs

- Performance increases as increase the number of pairs
- Saturating around K=10
 - Used this setting as default

Comp.3 Different Methods with Same Features

Compared with

•

- *FWM* [Shinohara04]
- *ANMM* [Wang09]
- *KISSME* [Kostinger12]
- *LF* [Pedagadi13]

Comparison 4 Other Reported Results

Rank score	1	5	10	20					
VIPeR									
Proposed	35.35	62.03	73.48	84.05					
RPLM [Hirzer12]	27	60	69	83					
RDC [Zheng12]	15.6	38.42	53.8	70.09					
SCEFA [Hu13]	26.49	49.80	60.29	73.54					
SDALF [Bazzani13]	19.11	38.97	51.07	65.29					
PRID2011									
Proposed	21.4	39.9	50.4	63.0					
RPLM [Hirzer12]	15	33	42	54					
GRID									
Proposed	18.08	37.28	46.24	59.84					
MRank [Loy13]	12.24	27.84	36.32	46.56					
CAVIAR									
Proposed	45.00	71.11	87.78	99.17					
LF [Pedagadi13]	33.61	50.55	66.94	90.55					

Comparison 5 Small Number of Training Person

VIPeR

[Rank score	1	5	10	20	
[# of training pers					
ļ	Proposed	25.93	50.32	63.19	76.3	
┍ᢣ╢	RDC [Zheng12]	12.29	31.55	44.49	59.91	
	SCEFA [Hu13]	23.71	45.39	55.39	67.89	
metric	SDALF [Bazzani13]	16.58	34.8	45.09	58.75	
learning	# of training pers	[-				
	Proposed	20.0	40.92	53.46	66.67	sophisticated
	RPLM [Hirzer12]	11	25	38	52	features
	RDC [Zheng12]	9.12	24.19	34.40	48.55	
	SCEFA [Hu13]	22.13	42.72	52.3	63.19],]
	SDALF [Bazzani]	15.19	31.72	41.45	54.15	

- Metric learning was weak when small size of training persons
- Proposed method is comparable to sophisticated features

Results of Weight Analysis

Dataset

Conclusion

- Discriminative Accumulation of Local Features for Person Re-Identification
 - Jointly learn multiple pairs of metric and weight map
 - Superior performance to state-of-the arts methods
- Future work
 - Extension to be adaptive for each input image