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Abstract—Metric learning to learn a good distance metric for
distinguishing different people while being insensitive to intra-
person variations is widely applied to person re-identification.
In previous works, local histograms are densely sampled to
extract spatially localized information of each person image.
The extracted local histograms are then concatenated into one
vector that is used as an input of metric learning. However, the
dimensionality of such a concatenated vector often becomes large
while the number of training samples is limited. This leads to
an over fitting problem. In this work, we argue that such a
problem of over-fitting comes from that it is each local histogram
dimension (e.g. color brightness bin) in the same position is
treated separately to examine which part of the image is more
discriminative. To solve this problem, we propose a method
that analyzes discriminative image positions shared by different
local histogram dimensions. A common weight map shared by
different dimensions and a distance metric which emphasizes
discriminative dimensions in the local histogram are jointly
learned with a unified discriminative criterion. Our experiments
using four different public datasets confirmed the effectiveness
of the proposed method.

I. INTRODUCTION

Re-identification of a person seen in dis-joint camera views
is one of the important research topics in visual surveillance.
By assuming targets do no change their clothes in short time,
the problem of person re-identification can be posed as that of
matching person images of a whole body with those captured
in different camera views. However, it is highly challenging to
perform accurate matching due to large intra-personal varia-
tions of appearance caused by viewpoint/illumination changes,
partial occlusion, and background variations.

In general, there are two main steps to perform person re-
identification. In the first step, a feature descriptor is extracted
from each person image in both probe and gallery sets. In
the second step, the feature descriptor of a probe image is
compared to that of each gallery image with some distance
metric.

A human pose often changes drastically among different
observations, and it is known that, in such cases, histogram-
based feature descriptors are more appropriate because the
integral nature of histogram-based feature descriptors makes
them less sensitive to human pose change. Some works [1],
[2] construct robust histogram-based feature descriptors against
pose change by accumulating features with a Gaussian-like
weight map in which where image positions likely to be
a foreground region have a high weight value. It is known
spatially localized information of color/texture is effective for
distinguishing different persons [4]. Therefore local histograms
are densely extracted on horizontal or grid cells and these
are often used for the input of metric learning. Supervised

learning is widely applied to learn a distance metric for a
feature descriptor [3], [4], [5], [6], [7], [8].

Some positions in input images such as corners of an
image tend to be background. The effects of local histograms
extracted from such positions should be weakened in distance
calculation. On the other hands, some positions such as upper
parts of a human body may have highly discriminative infor-
mation. The local histograms extracted from such positions
should be emphasized. In other words, the discriminativeness
of each of densely sampled local histograms should depend on
its extracted position. In the previous metric learning methods,
a concatenated vector of local histograms extracted from all
sampled positions is used as a feature vector. This means
the discriminative positions are separately analyzed in each
of local histogram dimensions (e.g. color brightness bins).

The number of available samples for training is generally
limited since it is hard to correct all possible situations for each
camera pairs. In such a case, the gap of sample distribution
between training and test sets becomes large. For example,
even though the training set does not contain the person
who wears clothes that have a specific color, such person
may appear in the test set. Therefore, this leads to an over-
fitting problem. Namely, local histograms on discriminative
positions would not be emphasized unless the persons in
the training set have similar local histograms to that of the
test samples on the same position. Although such over-fitting
can be alleviated by using coarsely sampled histograms, the
discriminative information that might commonly exist in both
the training and the test set will also be reduced.

To solve this problem, we propose a method that analyzes
discriminative image positions shared by different local his-
togram dimensions (e.g. color brightness bins). More specif-
ically, we construct a feature vector as a weighted summed
form of local histograms with a common weight map for
each dimension. By sharing the weight map for each of local
histogram dimensions, we can emphasize the discriminative
positions even if similar color/texture is not observed in a
training set. In this way, the problem of over-fitting in metric
learning is alleviated without sacrificing the descriptiveness of
the local histograms.

Some people may have highly distinctive positions on
a part of whole body (e.g. upper body), and some people
may have them on another parts (e.g. lower body). In these
ways, the discriminative positions are different depending on
each person. To effectively utilize such diverse discriminative
positions, we construct multiple weight maps. Note that each
of them is commonly applied to each of local histogram
dimensions, and thus the robustness against over-fitting is
maintained.

The flow of the proposed method is shown in Fig. 1.
For each weight map, we construct weighted local histograms
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Fig. 1. Flow of the proposed method. Our method jointly learns each pair
of a weight map for local histogram accumulations and a distance metric.

in pre-determined accumulation areas. The weighted local
histograms are concatenated into a single feature vector. To
emphasize discriminative dimension, a distance metric is ap-
plied to the feature vector. Using training data with correct
person labels, we jointly learn an optimal weight map and a
distance metric with a discriminative criterion that maximizes
the local discriminative information on sample space. Because
the important feature dimension calculated from different
discriminative parts of a human body may be different, we
learn different metric for the feature vector constructed from
each weight map. Finally, distances calculated from multiple
pairs of a weight map and a distance metric are integrated and
used for re-identification.

As far as we know, the closest method to ours is Fisher
Weight Map (FWM) [9] proposed for facial expression recog-
nition. The major advantages of the proposed method to FWM
are following two points. 1) FWM accumulates local features
into a global histogram. If FWM is applied to person re-
identification without any modification, a summed histogram
within a person image which includes different parts (e.g.,
head, upper body, and bottom body) becomes an input for
metric learning. In contrast, we accumulate local features
into several local accumulation areas. In general, a different
part in each person image has different color and texture.
Therefore, our method treats local features in different parts
more appropriately. 2) In FWM, a distance metric is learned
after weight maps were obtained. In contrast, we jointly learn
them. Thus, the proposed method utilizes more discriminative
information hidden in local features to obtain weight maps.

II. WEIGHTED ACCUMULATION OF LOCAL FEATURES

The proposed method is associated with multiple pairs of
a weight map and a distance metric. In each pair, we construct
weighted local histograms using the weight map and then
arrange them into a single feature vector (Fig. 1). In this
section, we explain this process.

We firstly define grid cells in each input image, and a
weight value for the histogram accumulation is set to each of
the grid cells. Let fr ∈ R

d′
be a vector of a local histogram

(such as a color histogram) of r-th grid cell and wr be a
weight value of the r-th grid cell (Fig. 2(a)). We then define
local accumulation areas to calculate a weighted histogram
within them (areas shown by dotted lines in Fig. 2(a)). Each
of the accumulation areas is composed of a set of nearby grid
cells and it can overlap with different areas. Let Ai be the set
of grid cells included in i-th accumulation area. Using them,
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Fig. 2. Linear form of accumulated local histograms with a weight map.

the weighted local histogram of the i-th accumulation area
hi ∈ R

d′
is defined as hi =

∑
r∈Ai

frwr.
We construct weighted local histograms calculated from

different accumulation areas and then concatenate them as a
single feature vector. Let g be the total number of accumulation
areas. Then the concatenated feature vector is defined by x =
[hT

1 , ...,h
T
g ]

T ∈ R
d, where d = d′g. Note that when we set

the number of accumulation areas as g = 1 and we include the
all grid cells in A1, the feature vector x becomes the global
weighted histogram used in FWM [9].

Now we define a weight map vector w = [w1, ..., ws]
T ∈

R
s, where s is the number of grid cells. Then we can rewrite

the feature vector x as a following linear form:

x = Fw, (1)

where F ∈ R
d×s is a feature matrix where the feature vectors

of a local histogram of grid cells are arranged so that for each
i-th set of d′ rows of the matrix, the weight wr acts only to the
feature vector fr extracted from the r-th grid cell that consist
the i-th accumulation area (Fig. 2(b)).

III. DISCRIMINATIVE LEARNING

In this section, we explain how to jointly learn the multiple
pairs of a weight map and a distance metric. To find these pairs
in a discriminative way, we optimize them by the Average
Neighborhood Margin Maximization (ANMM) criterion [10].
The ANMM criterion explores the discriminative information
locally on sample space. It is known that the local discrimi-
native information is more effective for recognition tasks than
the global one in the Fisher criterion.

A. Optimization problem
Given N training feature matrices {F i}Ni=1 extracted from

training samples with correct person labels, the objective of the
optimization is to seek optimal pairs of a weight map and a
distance metric. The optimal pairs are sought such that for each
sample, distances calculated between neighboring samples of
the same person become as small as possible, while simulta-
neously distances calculated between neighboring samples of
different persons become as large as possible.

At first, we see the k-th pair of a weight map and a distance
metric. Using a weight map vector, all of feature matrices are
transformed into the feature vectors as {xi = F iwk}Ni=1. For
any pair of the feature vectors xi and xj of the i-th and the
j-th images, a squared Mahalanobis-like distance is given by

D2
Mk

(xi,xj) = (xi − xj)
TMk(xi − xj), (2)

where Mk ∈ R
d×d is a matrix which defines the distance

metric of the k-th pair. In general, Mk is a valid metric
if and only if it is a symmetric and Positive Semi-Definite
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(PSD) matrix. In such a case, there exists a linear non-square
projection matrix Lk ∈ R

d×q where q ≤ d that satisfies
Mk = LkL

T
k . Using Lk, Eq.(2) can be computed as

D2
wk,Lk

(F i,F j) = ‖LT
kF iwk −LT

kF jwk‖22. (3)

Next, we consider K pairs of a weight vector and a
projection matrix corresponding to a distance metric; Ω =
{wk,Lk}Kk=1. In this case, we integrate multiple squared
Mahalanobis-like distances defined by each pair into one
distance as a following equation:

D2
Ω(F i,F j) =

K∑

k=1

D2
wk,Lk

(F i,F j). (4)

To introduce the optimization problem, we firstly define
two neighborhood sets for k-th pair of a weight map and a
distance metric. Let N S

i,k be the set of κs nearest neighborhood

sample which are in the same person as F i and ND
i,k be the

set of κd nearest neighborhood data which are in the different
persons as F i

1.
Then the average neighborhood margin γi,k of sample i

for k-th pair is defined as

γi,k =
∑

j∈ND
i,k

D2
wk,Lk

(F i,F j)

|ND
i,k|

−
∑

j∈NS
i,k

D2
wk,Lk

(F i,F j)

|N S
i,,k|

.

(5)
For tractability, we optimize a sum of the average neigh-

borhood margin per each pair of a weight map vector and a
distance metric instead of the margin calculated by the final
distance in Eq.(4). Summing up all training samples and all
pairs, the total average neighborhood margin is given as

γ =
N∑

i=1

K∑

k=1

γi,k =
K∑

k=1

J(wk,Lk), (6)

where J(wk,Lk) �
∑N

i=1 γi,k.
Giving some constraints, the optimization problem results

in

max
W ,L

K∑

k=1

J(wk,Lk)

s.t. W TW = I,

LT
kLk = I, k = 1, ...,K, (7)

where W = [w1, ..,wK ] and I is an identity matrix. The
first constraint is introduced so that the weight map vectors
are uncorrelated each other, and the second constraint ensures
each of the matrix Mk = LT

kLk becomes a valid metric, i.e.
symmetric and PSD matrix. Also both constraints prevent the
objective value becomes unbounded.

B. Greedy solution
It is difficult to get the global solution of the optimization

problem in Eq.(7). In order to get an approximation of the
global optimum solution to the above problem, we propose
to solve it by a greedy algorithm. The algorithm is shown
in Algorithm.1. We separate the problem Eq.(7) into K steps

1Since wk and Lk in the distance Eq.(3) are unknown, the neighborhood
sets are initially searched by the Frobenius norm of matrix difference using
F . Then we update the neighborhood sets per k using the updated distance
in each step of the optimization.

and sequentially solve them. In each k-th step, we optimize
the k-th pair of a weight map vector and a projection matrix
{wk,Lk} such that

max
wk,Lk

J(wk,Lk)

s.t. wT
kwk = 1,

wT
kwm = 0, m = 1, ..., k − 1,

LT
kLk = I. (8)

The second constraint wT
kwm = 0,m = 1, ..., k−1 ensures to

uncorrelate the k-th weight map vector wk to already learned
weight map vectors in previous steps {wm}k−1

m=1. Assume
that each row of each i-th feature matrix F i is uncorrelated
to {wm}k−1

m=1, i.e. F iwm = 0,m = 1, ..., k − 1, where 0
is a vector whose all components are zero. In such a case,
the second constraint can be omitted (see Appendix). This
uncorrelation can be achieved by

F ′i ← F i −
k−1∑

m=1

{
(1d ⊗wT

m)� (1T
s ⊗ F iwm)

}
. (9)

where ⊗ is a kroneker product and � is an element-wise
product of matrices and 1d ∈ R

d and 1s ∈ R
s are column

vectors whose all components are 1.
Now, the optimization problem in Eq.(8) is simplified to

max
wk,Lk

J ′(wk,Lk)

s.t. wT
kwk = 1,

LT
kLk = I, (10)

where the J ′ is the objective value calculated using F ’ instead
of F . The optimal solution of Eq.(10) can not be obtained at
once. However, if we fixed one of {wk,Lk}, we can maximize
the object value in a closed form. Thus, we solve it by an
alternative optimization. We start with constant weight map
vectors wk = 1s/(1

T
s 1s) and repeat following processes Tmax

times.
On optimizing Lk: By fixing wk and transforming

the feature matrices as {xi = F ′iwk}Ni=1, the optimization
problem in Eq.(10) results in2

L∗k = argmax
Lk

Tr{LT
k (Σ

wk

D −Σwk

S )Lk}s.t.LT
kLk = I, (11)

where

Σwk

D =
N∑

i=1

∑

j∈ND
i,k

(xi − xj)(xi − xj)
T

|ND
i,k|

,

Σwk

S =
N∑

i=1

∑

j∈NS
i,k

(xi − xj)(xi − xj)
T

|NS
i,k|

, (12)

and Tr(·) stands for a trace operator of matrices. Taking the
Larange equation and setting its derivative of Lk to zero, we
obtain the following eigen value problem:

(Σwk

D −Σwk

S )Lk = λLk. (13)

Thus, the optimal projection matrix is given as L∗k = [l∗1, ..., l
∗
q ]

where the column vectors are eigen vectors corresponding to
the larges q eigen values in the above problem.

2It can be derived in a similar manner to ANMM of Wang et al. [10].
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Algorithm 1 Algorithm for greedy solution

Require: A training feature matrices {F i}Ni=1 ;
1: for k = 1, 2, ..., K do
2: Initialize wk = 1s/(1

T
s 1s);

3: for t = 1, 2, ..., Tmax do
4: (a) Search neighborhood sets using {xi=F iwk}Ni=1;
5: (b) Compute Σwk

D and Σwk

S in Eq.(12);
6: (c) Obtain Lk by the eigen value problem in Eq.(13);
7: (d) Search neighborhood sets using {Y i=L

T
kF i}Ni=1;

8: (e) Compute ΣLk

D and ΣLk

S in Eq.(15);
9: (f) Obtain wk by the eigen value problem in Eq.(16);

10: end for
11: Uncorrelate feature matrices as

{F i}Ni=1 ← {F i − (1d ⊗wT
k )� (1T

s ⊗ F iwk)}Ni=1;
12: end for
Ensure: Pairs of a weight map and a projection {wk,Lk}Kk=1;

On optimizing wk: By fixing Lk and projecting the fea-
ture matrices as {Y i = LT

kF
′
i}Ni=1, the optimization problem

in Eq.(10) results in

w∗k = argmax
wk

wT
k (Σ

Lk

D −ΣLk

S )wk s.t.wT
kwk = 1, (14)

where

ΣLk

D =
N∑

i=1

∑

j∈ND
i,k

(Y i − Y j)
T (Y i − Y j)

|ND
i,k|

,

ΣLk

S =
N∑

i=1

∑

j∈NS
i,k

(Y i − Y j)
T (Y i − Y j)

|N S
i,k|

. (15)

Thus, the optimal w∗k by fixing Lk is given by an eigen vector
corresponding to the largest eigen value of the following eigen
value problem:

(ΣLk

D −ΣLk

S )wk = γwk. (16)

IV. EXPERIMENTS

A. Setup
Datasets. We evaluated the proposed method on four

commonly used public datasets; VIPeR [11], PRID2011 [12],
GRID [13], and CAVIAR [14]. Following to other researches3,
we randomly divided the whole person images into a training
and a test set. Every person in the training set has an image
pair in different camera views. The test set consists of a probe
and a gallery set. On PRID2011 and GRID, there exist persons
that appear only in the gallery set, therefore the number of
persons in this set is larger than that in the probe set. For every
person in each probe/gallery set, five images are assigned for
CAVIAR (i.e. multi-shot re-identification) and a single image
is assigned for other datasets (i.e. single-shot re-identification).
For the multi-shot re-identification, we calculate a distance for
each possible pair of images between two persons, and the
minimum distance of them [1] is used. The division setup of
each dataset is shown in Table I. The whole evaluation was
carried out 10 times by changing the random division of a
training and a test set. We report the average results of them.

Features and accumulation areas. We used three types
of visual features; HSV color histogram, color HOG, and a

3For CAVIAR, several papers used this dataset in different settings. We
followed the setting of Pedagadi et al. [8].

TABLE I. SETUP OF EACH DATASET.

traning set test set
# of training # of probe # of gallery shotnum/

Dataset persons persons persons person
VIPeR [11] 316 316 316 1
PRID2011 [12] 100 100 649 1
GRID [13] 125 125 900 1
CAVIAR [14] 36 36 36 5

texture histogram. For the HSV color histogram, an 8-bin color
histogram was calculated in each HSV component. Hence, the
histogram results in 24 dimensional per each grid cell. For
the color HOG, an 8-bin gradient orientation histogram was
calculated in each YCbCr component. Hence, the orientation
histogram results in 24 dimensional per each grid cell. For the
texture histogram, 13 Schmid and 6 Gabor filters were applied
to intensity components of an image and each filter response
was discretized into 8-bin. Hence, the texture histogram results
in 152 dimensional per each grid cell. We created the feature
matrix defined in Sec.2 per each of the three visual features,
and then concatenated them in a row and formed a single
feature matrix. As an area configuration, we integrated 15×15
grid cells (s = 225) into 6 × 1 accumulation areas (g = 6).
Both of them have overlap to different cells/areas.

Parameter settings. We set parameters of the proposed
method as follows. The neighborhood size of different person
was set to κd = 10. Because the number of samples in a single
person is small in our experiments, we considered all samples
in the same person as neighbors. The iteration number was set
as Tmax = 5. The number of pairs of a weight map and a
distance metric was set as K = 10. The dimensionality of the
projection matrix was set as q = 20.

B. Performance comparison
Comparison of accumulation areas. To see the effects

of the different configurations of the accumulation area, we
varied the area configuration so that each configuration divides
an input image into one of 1×1, 2×2, 4×4, 1×2, 1×4, 1×6,
2×1, 4×1, or 6×1 areas. For each configuration, each of the
accumulation areas is equal size and overlaps with different
areas. Fig. 3 shows the rank 1 and rank 10 recognition rates
of the proposed method on different area configurations. The
proposed method greatly improves the performance when more
areas are used than the global histogram (1×1 area) that is used
in FWM [9]. Among the area configurations, the horizontal
strips (6×1, 4×1, and 2×1) work well on both VIPeR and
PRID2011 datasets. From now on, we report the results of
6×1 areas for all datasets.

Comparison of the number of weight map and metric
pairs. Fig. 6 shows the rank 1 and 10 recognition rates
in different number of weight map and metric pairs. The
performance is increasing as to increase the number of pairs
and it is saturating around 10-20.

Comparison with different methods. First, we compared
the proposed method with FWM [9], ANMM [10], Local
Fisher Discriminant Analysis (LF) [8], and KISS metric learn-
ing (KISSME) [6] with common features to us. For FWM,
we obtained weight maps by the Fisher criterion. Then the
weighted histograms with learned weight maps were concate-
nated into one feature vector. The metric of the resulting fea-
ture vector was learned by ANMM. Thus, we refer it to FWM
+ ANMM. For other methods (ANMM, LF, and KISSME), we
used a concatenation of local histograms on 15×15 overlap-
ping grid cells as a feature vector. The same three types of
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Fig. 3. Comparison of different configurations of the accumulation area.
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Fig. 4. Comparison of different number of weight map and metric pairs.

visual features to our method were used, and a feature vector
was created for each feature type. PCA was applied to each
of different types of feature vectors independently [8] and the
compressed feature vectors were concatenated into one feature
vector. The parameters of each method were tuned so that
the best performance was obtained. Fig. 5 shows Cumulative
Matching Characteristic (CMC) curves on each dataset. The
results show that the proposed method outperforms all of
the above base-line methods. Especially, the improvements on
PRID2011 and GRID are high.

We then compared the results of the proposed method with
previously reported them in other papers. The comparisons
are shown in Table II. The rank-1 (rank-10) recognition rate
of the proposed method is 35.35(73.48)% on VIPeR. This is
a significantly better result compared with the results of the
state-of-the art methods such as 27(69)% of Relaxed Pairwise
Learned Metric (RPLM) [5]. Before now, RPLM reported
the best re-identification result on PRID2011 and Manifold
Ranking (MR) [15] reported it on GRID. The proposed method
outperforms these methods with high margins. For CAVIAR,
we followed the experimental settings of Pedagadi et al. [8]4.
The rank-1 recognition rate reported in their paper is 36.19%

and the result of the proposed method is 44.16%. The proposed
method achieves a better result than the previously reported
result also on this dataset.

Comparison on different training sample sizes. On
VIPeR, we compared our method on different sizes of train-
ing/test persons; 200 and 432 persons for a training and a test
set, and 100 and 532 persons for a training and a test set. These
divisions are commonly used in some previous works [1], [2],
[5], [7]. Table III shows the comparison on these divisions.
As to the number of training persons becomes low, the perfor-
mances of all methods are decreased. In the table, SDALF [1]
and SCEALF [2] are training free methods and the others are
metric learning methods. Training free methods use several
sophisticated features and matching methods such as graph
matching, so these methods could produce high accuracies
without training. It is known that metric learning methods
are weak when the size of training set is small [2]. Hence,
all of previous metric learning methods were worse than the
training free methods when the number of training persons
is 100. In all cases of person divisions, the performances of

4The reported result in Pedagadi et al. [8] is normalized into a scale of 1
to 100 ranks. So, we showed our experimental results in Table II.
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Fig. 5. Performance comparison on various datasets using CMC curves.
Common features were used in all methods.

the proposed method are consistently better than other metric
learning methods. In addition, the proposed method achieves
better results than training free methods in latter ranks than 10
when the number of training persons is 100.

C. Analysis of learned position weights
We analyzed the learned position weights of the proposed

method by visualizing weights corresponding to each grid cell.
Because the standard metric learning methods also can be seen
as weight learning methods of each dimension of a feature
vector, as an example of them, the learned weights of ANMM
was also visualized. The visualizations were done as follows.
For ANMM, the k-th row of a projection matrix (i.e. projection
vector) is considered as k-th position weights. Since PCA was
applied to the input feature vector, the projection vectors were
backed from PCA compression space to original feature space
by the production of PCA bases. Within each of the projection
vector, the absolute values of weights which are corresponding
to the same grid cell were averaged and this value is considered
as a position weight. For the proposed method, the combination
of a weight map vector and a distance metric in the k-th pair
is considered as k-th position weights. For each pair, absolute
values of products of Lk and wk that are corresponding to the
same grid cell were averaged and this value is considered as
a position weight. In both methods, resulting 225 (=15×15)
dimensional position weights were resized into the original
image size.

Fig. 6 shows the visualization results on VIPeR (number
of training persons =100) and PRID2011 dataset. We can
see that the position weights of ANMM contain more high
weight values in the corners of the images than that of the
proposed method. Such regions generally contain background
information of each image and are non-relevant to the per-
son. Although cropped regions of PRID2011 are wider than
that of VIPeR and more background regions are contained
in PRID2011, the effects of the background regions were
adequately suppressed in the proposed method. This might be
the reason why the proposed method achieved much better
results than other baseline methods on this dataset. Although
foreground points are one example of discriminative positions
on person images, it seems to be evidence that shows the
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TABLE II. COMPARISON WITH OTHER PUBLISHED RESULTS.
Rank score 1 5 10 20

VIPeR
Proposed 35.35 62.03 73.48 84.05
RPLM [5] 27 60 69 83
RDC [7] 15.6 38.42 53.8 70.09
SCEAF [2] 26.49 49.80 60.29 73.54
SDALF [1] 19.11 38.97 51.07 65.29

PRID2011
Proposed 21.4 39.9 50.4 63.0
RPLM [5] 15 33 42 54

GRID
Proposed 18.08 37.28 46.24 59.84
MRank-Ln (RankSVM) [15] 12.24 27.84 36.32 46.56

CAVIAR
Proposed 45.00 71.11 87.78 99.17
LF [8] 33.61 50.55 66.94 90.55

TABLE III. COMPARISON ON DIFFRENT SETTINGS OF VIPeR.
Rank score 1 5 10 20

# of training persons = 200 (gallery size 432)
Proposed 25.93 50.32 63.19 76.3
RDC [7] 12.29 31.55 44.49 59.91
SCEALF [2] 23.71 45.39 55.39 67.89
SDALF [1] 16.58 34.8 45.09 58.75

# of training persons = 100 (gallery size 532)
Proposed 20.0 40.92 53.46 66.67
RPLM [5] 11 25 38 52
RDC [7] 9.12 24.19 34.40 48.55
SCEALF [2] 22.13 42.72 52.3 63.19
SDALF [1] 15.19 31.72 41,45 54.15

proposed method less tends to cause over-fitting compared with
existing metric learning methods.

V. CONCLUSION

We have proposed a discriminative accumulation method
of local histograms for person re-identification. The proposed
method jointly learns pairs of a weight map for the accumu-
lations and a distance metric which emphasizes discriminative
histogram dimensions. Since each of the weight map is shared
in each of the local histogram dimensions, the proposed
method less tends to cause over-fitting. Through experiments,
we showed that the proposed method can achieve better re-
identification accuracies than other typical metric learning
methods on various sizes of datasets. As other metric learning
methods fix the distance metric for all input images, the learned
values in each pair are also fixed in the proposed method. The
extension of the proposed method to be adaptive for each input
image is one of our possible future works.
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APPENDIX

Equivalence of the problems in Eqs.(8) and (10): We show the second
constraint in Eq.(8) is satisfied in the solution of Eq.(10) and the objective
values in Eqs.(8) and (10) are same.

The k-th weight map vector wk can be decomposed into two vectors

wk = wkc + wku, where wkc =
∑k−1

m=1 w
T
k wmwm is a vector that

shows the correlating components to previously learned weight map vectors
and wku is a vector that shows the uncorrelating components to them, i.e.
wT

kcwku = 0. Since wT
k wk = 1, the following relation holds:

wT
kuwku = 1−wT

kcwkc. (17)

After the uncorrelation in Eq.(9), the feature vector calculated using wk

becomes xi = F ′iwkc + F ′iwku = F ′iwku. Let w̄ku be a normalized
vector w̄ku = wku/(w

T
kuwku). Then the distance in Eq.(3) becomes

Dwk,Lk
(F ′i,F

′
j) = wT

kuwku‖LT
k F ′iw̄ku−LT

k F ′jw̄ku‖22. Therefore, the

objective value in Eq.(10) becomes J(wk,Lk) = wT
kuwkuJ(w̄ku,Lk).

To maximize the objective value, the value wT
kuwku needs to be maximized

among the weight vectors which have same w̄ku. From Eq.(17), we can see
that the value wT

kuwku is maximized when wT
kcwkc = 0. Since the wkc is

a linear combination of the orthogonal bases {wm}k−1
m=1, all of its coefficients

{wT
k wm}k−1

m=1 should be zero to satisfy wT
kcwkc = 0. Thus, the solution

of the problem in Eq.(10) needs to satisfy the second constraint in Eq.(8).
Let f̃ i,v and f̃

′
i,v be the v-th row vector of the F i and F ′i, respectively.

After the uncorrelation in Eq.(9), the following relation holds:

f̃
′
i,v = f̃ i,v −

k−1∑
m=1

f̃ i,vwmwT
m, v = 1, .., d. (18)

By multiplying wk into Eq.(18), the following relation holds for every v-th
row vector of the F i and F ′

i:

f̃
′
i,vwk = f̃ i,vwk −

k−1∑
m=1

f̃ i,vwm wT
mmk︸ ︷︷ ︸
=0

= f̃ i,vwk. (19)

Therefore it holds F ′
iwk = F iwk , and thus the objective values in Eqs.(8)

and (10) are same.
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