

23rd International Conference on Pattern Recognition

WeAT4.5

Person Re-Identification Using CNN Features Learned from Combination of Attributes

<u>Tetsu Matsukawa</u> Einoshin Suzuki Kyushu University, JAPAN

Person Re-Identification

• Task : Find the same person in different camera view

Challenges : Large intra-personal variations
 e.g. illumination/pose/occlusion/background

Approach for Re-Identification

- Traditional Approach
 - 1. Feature extraction

- Covolutional Neural Network (CNN)
 - Unify feature extraction and distance metric learning [Yi ICPR2014]
 - Require a large amount of annotated training data
 - Most of person re-identification datasets are small (typically below than 1K training images)

CNN Features

- Neural activations of top layers of a pre-trained CNN
 - Strong off-the-shelf feature descriptors
 [Donahue ICML2014, Razavian CVPRWS 2014, Azizpour PAMI2016]
 - A large training data is required only for feature learning
- Problem
 - Pre-trained CNN features perform poor in person re-identification due to large-disparity from pre-trained task

Fine-tuning

- Re-training pre-trained CNN with different dataset
 - Transfer knowledge of pre-trained data
 - Significantly improve the recognition accuracies on another task [Oquab CVPR2014, Chatfiled BMVC2014 etc]

Contribution(1): Fine-tuning by Attribute Classification Task

 Task: person image recognition by semantic attributes eg. Gender, Luggage, Clothing.

skirt

female backpack

luggage case

sweater tshirt

hot pants

Advantage

- Easy to be labeled by human annotator
- Large number of training samples per attributes
- Large-scale dataset
 - eg. PETA[Deng ACMMM2014], RAP[Li ArXiv2016]

Motivation

 Annotated attributes in existing datasets are coarse to determine specific person

Concern: Discriminative power of CNN features solely finetuned on attribute classification task would be insufficient

Combination of attribute is more person specific

Tshirt Λ backpack Λ upper body white Λ trouser

Contribution(2): Fine-tuning by Classification of Combination Attributes

• Fine-tuning task: Classification of attribute-combination

Overview FC8 1 male Phase 1. Fine-tuning on Gender female pedestrian attribute recognition FC8 G black FC6 FC7 LowerBody Color vellow C3 C4 C5 a) Multi-Attribute Loss FC8 C man \land 16-30 $\land \dots \land$ black man \wedge 16-30 $\wedge \dots \wedge$ blue **Pre-trained on ImageNet** female \land over 60 \land ... \land yellow (b) Comb.-Attribute Loss Phase 2. Applying on person re-identification dataset Metric **CNN** Feature + Learning

(a) Multi-Attribute Classification

- Prepare: Dataset with mutually exclusive attribute labels in G groups
- Attach multi-class classification layer for each group

Share the lower layers of CNN inspired by

[Li ACPR2015, Zhu ICB2015, Sudowe ICCVWS 2015]

Kyushu University

(a) Loss Function

- #of training samples for each attribute is largely imbalanced
- Use weighted cross entropy loss function
 - \succ Loss for g-th attribute group

$$L^{g} = -\frac{1}{N^{g}} \sum_{i=1}^{N} \sum_{k=1}^{K^{g}} w_{k(i)}^{g} l_{i,k}^{g} \log p_{i,k}^{g}$$

- \mathcal{W}_{k}^{g} : weight for k-th attribute $l_{i,k}^{g}$: correct label
 - - : output of softmax function

(b) Combination of Groups

- Combination only among different groups is required since attributes in each group is mutually exclusive
- Combination among r subset groups can be considered

If r < G : Selection from many possible group subsets required

e.g. r = 3

If r = G:
 No need to select subset groups
 (use this case as default)

(b) Comb.-Attribute Classification

All attribute combinations among different groups

(a)+(b) Total Loss Function

- Some training data do not have the comb.-attribute label
 - Missing labels in some attribute group
 - Discard too rare combinations

$$L = \alpha L^{C} + (1 - \alpha) \frac{1}{G} \sum_{g=1}^{G} L^{g}$$

$$C1-FC7$$

$$\alpha$$
Multi-Attribute
Loss
$$C1-FC7$$

$$Comb.-Attribute$$
Loss

 $0 \leq \alpha \leq 1$: Contribution of combination attribute loss Default: $\alpha = 0.5$

Database for Fine-tuning

- PETA [Deng ACMMM2014]: 19,000 images with 61 annotated attributes
- We manually selected 7 attributes groups

Experiment

- Setup
 - Network architecture: AlexNet [Krizhevsky NIPS2012]
 - Extract 4,096 dim. feature vector from FC6 layer (Applied L2 norm normalization)
 - Metric Learning: Cross-view Quadric Discriminant Analysis (XQDA) [Liao CVPR15]
- Four person re-identification dataset

 Using both losses improves accuracies

Kyushu University

- Converged about 5k iterations
- Comb.+Multi consistently better

 Performance increases as to increase the combined groups

 Larger r produce large number of combination attributes

Performance Comparison (1/2)

CMC Curve (VIPeR)

- Compared CNN features
 FT-CNN: Fine-tuned
 - Comb.+Multi: Ours
 - Multi.: Only multi-attribute loss
 - Person: Person identity of PETA
 - FFN: Feature Fusion Net [Wu WACV2016]
 - ImageNet: Pre-trained CNN

	Rank				
	Methods	VIPeR	CUHK01	PRID450S	GRID
	FT-CNN(Comb.+Multi)	42.5	46.8	58.2	25.2
	FT-CNN(Multi.)	39.6	44.8	55.8	24.6
	FT-CNN(Person)	37.9	44.0	56.4	23.9
	FNN	31.8	32.4	51.6	-
	CNN(ImageNet)	19.7	28.5	38.0	8.2
-					

Performance Comparison (2/2)

	State-of-the-art				Rank-1 rates (%)		
	Methods	Ref.	VIPeR	CUHK01	PRID450S	GRID	
_	GOG	CVPR2016	49.7	57.8	68.4	24.7	
	FT-CNN	Ours	42.5	46.8	58.2	25.2	
	LOMO	CVPR2015	40.0	50.0	61.4	16.6	
	Improved Deep	CVPR2015	34.8	⁴⁷ ≻ C	competitive to	o LOMC	
	SCNCD	ECCV2014	37.8	-	41.6	-	
	DALF	ICPR2014	35.4	-	-	18.1	
	CNN + hand-c	rafted deso	criptors		Rank-1 ra	ates (%)	
	Methods	Ref.	VIPeR	CUHK0 [,]	1 PRID450S	GRID	
	FT-CNN+LOMO	Ours	52.1	62.3	71.5	29.1	
П	FFN+LOMO	WACV2016	51.1	≻ Im	proved the a	accuraci	
M /	Metric Ensemble	CVPR2015	45.9	53.4	-	-	
慶	Kyushu University					21	

Conclusion

- CNN fine-tuning on pedestrian attributes dataset
 - High performance gains by conducting fine-tuning with multiattribute classification loss (16.3-19.9% in CMC@rank-1)
 - Combination of attributes loss further improve performances (0.6-2.9% in CMC@rank-1)
 - Achieved competitive performance to hand-crafted descriptors

Future work

- Increase number of training samples
- Combination with a classification loss of person identity

