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Abstract—This paper presents fine-tuned CNN features for
person re-identification. Recently, features extracted from top
layers of pre-trained Convolutional Neural Network (CNN) on
a large annotated dataset, e.g., ImageNet, have been proven
to be strong off-the-shelf descriptors for various recognition
tasks. However, large disparity among the pre-trained task, i.e.,
ImageNet classification, and the target task, i.e., person image
matching, limits performances of the CNN features for person
re-identification. In this paper, we improve the CNN features
by conducting a fine-tuning on a pedestrian attribute dataset. In
addition to the classification loss for multiple pedestrian attribute
labels, we propose new labels by combining different attribute
labels and use them for an additional classification loss function.
The combination attribute loss forces CNN to distinguish more
person specific information, yielding more discriminative fea-
tures. After extracting features from the learned CNN, we apply
conventional metric learning on a target re-identification dataset
for further increasing discriminative power. Experimental results
on four challenging person re-identification datasets (VIPeR,
CUHK, PRID450S and GRID) demonstrate the effectiveness of
the proposed features.

I. INTRODUCTION

Person re-identification is a matching task of person images
captured from different and dis-joint camera views. A typical
procedure in person re-identification is composed of the fol-
lowing two steps. Firstly, discriminative and robust appearance
features are extracted from person images [1], [2], [3]. Then a
learned metric using training data with correct matching pairs
is applied to increase discriminative power of the extracted
features [2], [4], [5], [6], [7].

Recently, deep learning has been applied in person re-
identification [8], [9], [10]. Deep learning methods in the
person re-identification unify the feature extraction and the
distance metric learning processes into one framework. Al-
though deep learning requires a large amount of annotated data
to obtain high performances, the amount of available training
data in person re-identification is often insufficient.

Recent seminal researches show that the neural activations
of top layers of a pre-trained Convolutional Neural Network
(CNN) on a large annotated dataset, e.g., ImageNet, can be
used as strong off-the-shelf feature descriptors [11], [12],
[13]. This approach requires a large number of annotated
data only for the auxiliary task of the feature extraction, and
conventional metric learning methods can be applied with
relative smaller training data for the target task. Though the
CNN is trained on ImageNet classification, extracted CNN
features exhibit remarkably high performance on a diverse
range of recognition tasks [11], [12], [13].

Personal: female, less30
Carrying: plastic bags
UpperBody: black 
LowerBody: black, trousers

Personal: female, less45
Carrying: nothing
UpperBody: white 
LowerBody: black, trousers

Personal: male, less30 
Carrying: backpack
UpperBody: blue
LowerBody: black, trousers

Personal: male, less60
Carrying: nothing
UpperBody: blue
LowerBody: grey, trousers

Personal: male, less45
Carrying: suitcase
UpperBody: black
LowerBody: black, suits

Personal: female, less60
Carrying: other
UpperBody: black 
LowerBody: black, trousers

Fig. 1. Examples of combination-attributes. To explicitly learn features to
distinguish different attribute combinations, we treat each of the different
attribute combinations as a different class for CNN fine-tuning.

However, large disparity exists among person images and
object categories of ImageNet, which limits the performance
of the CNN features for person re-identification. Re-training a
pre-trained CNN for another task is called fine-tuning, which
transfers the knowledge of pre-training data and significantly
improves the performance on another task [14], [15].

Recognizing person images by semantic attributes, such
as gender, clothing type and carrying object, is another
emerging task in surveillance research. The pedestrian attribute
recognition is applicable to retrieval of person images by
textual description, e.g., eye-witness [16]. Also, it has been
used as additional label information to assist person re-
identification [17], [18]. Researchers have been building large-
scale datasets for this task [19], [20], [21].

In this paper, we conduct a fine-tuning of CNN features on
a pedestrian attribute dataset to bridge the gap of ImageNet
classification and person re-identification. There are several
advantages to focus on pedestrian attributes. First, attributes
are often easy to be labeled by a human annotator compared to
person identity when a large number of persons are in similar
appearances. Second, a large number of training samples can
be collected per attribute because different people have com-
mon attributes. Finally, since the attribute information adds
additional constraints to improve the person re-identification
accuracies, attribute datasets can be potentially combined with
datasets which are annotated by person identities.

The annotated attribute labels in a pedestrian attribute
dataset are often coarse and many people share the same
attributes. Although feature descriptors are required to be
discriminative enough to distinguish different persons, CNN
tries to classify different people who have a common attribute
into the same class. Therefore, the discriminative power of
CNN features solely fined-tuned on pedestrian attributes is
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typically insufficient.
To address this problem, we focus on combinations of

attributes for grouping similar people. For example, there
are many people wearing sweater, but the people who wear
red sweater and jeans would be limited and thus such an
attribute combination represents more person specific infor-
mation. Based on this observation, we treat combinations
of multiple attributes as different classes, which we call
combination-attributes (Fig. 1). We then conduct a fine-tuning
of CNN features by minimizing a loss function for classi-
fying the combination-attributes. This auxiliary task forces
to classify more person specific information, and thus more
discriminative features can be learned within CNN. It is worth
noting that the proposed combination-attribute labels require
no manual effort for the annotator once the basic attribute
labels are given. The major contributions of this paper are;

• We show that the fine-tuning on the pedestrian attribute
dataset largely improves the performance of CNN fea-
tures for person re-identification.

• We propose a loss function for classifying combination
attributes to increase discriminative power of CNN fea-
tures.

II. RELATED WORKS

Although deep learning is actively researched on person re-
identification [8], [9], [10], most of their focuses are the design
of a new architecture for matching person images. Because
they require a large number of annotated samples, their per-
formances are still lower than traditional hand-crafted features
and metric learning approach on small sampled datasets [3].

Paisitkriangkrai et al. used CNN features in their metric
ensemble approach [6]. They observed that CNN features
perform poorer than hand-crafted features and suspected that
pre-trained CNN on ImageNet regards color information less
important. Wu et al. argued that hand crafted histogram
features often perform well and complementary used the CNN
features with hand crafted features [22]. For unsupervised
settings, Hu et al. conducted cross dataset re-identification
using CNN features trained on a different dataset [23]. None of
the previous works on supervised re-identification showed that
CNN features alone can perform competitive to hand crafted
features.

Recently, CNN has been adopted also in pedestrian attribute
recognition [24], [25], [26]. Although, Zhu et al. [25] applied
the learned CNN for person re-identification, they used the
attribute prediction scores, i.e., the output layer. It is known
that the upper layers of CNN are more sensitive to semantics,
while intermediate layers are specific to low-level patterns,
such as color and gradients [13]. Use of upper or intermediate
layers rather than the output layer is a common and effective
practice of CNN features [11], [12], [13].

There are several works that use interactions of multiple
attributes for attribute recognition [27], [28]. While their objec-
tive is improving attribute recognition accuracies themselves,
we introduce combination attributes to emerge discriminative
features in CNN for improving person re-identification.

Phase 2. Applying on person             

re-identification dataset

(e.g., VIPeR)
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man ∧∧∧∧ 16-30 ∧∧∧∧ … ∧∧∧∧ black 

female ∧∧∧∧ over 60 ∧∧∧∧ … ∧∧∧∧ yellow

male

female

black

yellow

4096 dim.

CNN Feature

FC6 FC7

LowerBody Color 

man ∧∧∧∧ 16-30 ∧∧∧∧ … ∧∧∧∧ blue 

…

…

……

……

……

…

Phase 1. Fine-tuning on PETA

FC8_1
C1

C2

Metric Learning

(XQDA)

(a) Multi-Attribute Loss

(b) Combination-Attribute Loss

C3 C4 C5

Pre-trained on ImageNet

FC8_G

FC8_C

+

Fig. 2. The proposed CNN features. For a CNN fine-tuning, new fully
connected layers and softmax loss layers for classifying multi-attributes and
combination-attributes are attached to the FC7 layers of AlexNet.

III. LEARNING CNN FEATURES USING CLASSIFICATION
OF ATTRIBUTE COMBINATIONS

A. Overview
We outline the our approach in Fig. 2. We use the CNN

architecture designed by Krizhevsky et al. (AlexNet) [29].
The CNN is composed of five successive convolutional layers
(C1,...,C5) and three fully connected layers (FC6,...,FC8).
Pooling layers are applied to the first, second and fifth
convolutional layers. The CNN is initialized with the pre-
trained model on 1.2M images for classifying 1,000-class
classification of ImageNet. Our approach consists of two
phases: a CNN fine-tuning on an auxiliary dataset (Phase 1)
and a feature extraction on a target re-identification dataset
(Phase 2).
Phase 1. We conduct fine-tuning on Pedestrian Attribute
(PETA) dataset [20], which is annotated by multiple attribute
labels in several groups (Sec.IV), so that CNN jointly learns
two auxiliary tasks. (a) One task is classification of multiple
attributes within each of attribute groups. For this task, we
attach FC8 layers in each of which the number of output
nodes is equal to the number of multiple attribute labels in
a group. (b) The other task is classification of combination-
attributes. For each sample in the PETA dataset, we assign a
combination attribute label, which is an index of the frequent
attribute combinations on the PETA dataset. For this task, we
attach an additional FC8 layer, in which the number of output
nodes is equal to the number of combination-attribute labels.
Using backpropagation, parameters of CNN are optimized to
minimize loss functions for both tasks.
Phase 2. We use the CNN features on a target person re-
identification dataset. For each image on the dataset, we
extract a 4,096 dimensional feature vector from the first fully
connected layer (FC6) of the learned CNN. We then apply
metric learning on the target dataset to increase discriminative
power for person re-identification.

Since for the Phase 2, we use an existing metric learning [2],
the rest of this section describes the details of the Phase 1.

B. Multi-Attribute Classification Loss
The training dataset consists of N person images. Each

image is annotated for G attribute groups, e.g., Gender, Age,
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Luggage and UpperBody Clothing. For each group, we have
K(g) attributes, e.g., male and female in the Gender group,
black, white and yellow in the UpperBody Color group. Let
D = {(xi, l

1
i , ..., l

G
i )}Ni=1 be the dataset where xi is the i-th

image and lgi = (lgi,1, ..., l
g
i,K(g)) is its attribute label vector

for the g-th attribute group. The label lgi,k takes lgi,k ∈ {0, 1}.
lgi,k = 1 and 0 respectively represents the presence and the
absence of the k-th attribute of group g in xi.

By using a multi-attribute classification loss function, the
CNN is trained to predict attribute labels in each of G attribute
groups. In this paper, we assume that each image can have
only one attribute in each group. We consider a K(g) class
multi-class classification problem for each g-th group.

It is reported that sharing the CNN parameters for clas-
sifying multiple attributes improves performances of attribute
recognition [24], [25], [26] 1. Following this strategy, we share
the CNN parameters and add G fully connected layers, each
of them classifies attributes in each group (Fig. 2 (a)).

For each g-th attribute group, we minimize the softmax
loss function. In the pedestrian attribute dataset, the number
of training samples per attribute is often largely imbalanced.
In such a case, CNN largely degrades performances. To
handle such imbalanced training labels, we use the following
weighted cross entropy loss defined by

Lg = − 1

Ng

N∑
i=1

Kg∑
k=1

lgi,klogp
g
i,k

Ng
k(i)

, g = 1, ..., G, (1)

where Ng is the number of training samples in the g-th
attribute group, and Ng

k(i) is the number of training samples
of k-th attribute that the i-th sample has in the g-th group. The
probability pgi,k is modeled by a softmax function applied to
the outputs of the FC8 layer for the g-th attribute group. Let
ogi,k denote the k-th output for xi, then the softmax function
is defined by

pgk =
exp(ogi,k)∑K(g)

k′=1 exp(o
g
i,k′)

. (2)

C. Combination-Attribute Classification Loss
We focus on the combinations of attributes to group the

people who commonly have more fine grained appearance
information. For obtaining the combination-attribute labels,
the consideration of combinations is required for only among
different attribute groups because each attribute in the group is
mutually exclusive. One would like to combine only discrimi-
native subsets from all G attribute groups. However, there are
many possible subsets, i.e., GCr combinations, where r is the
number of attribute groups to be combined. For simplicity,
we use the combinations involving all G attribute groups. In
this case, there are K(C′) = K(1) × K(2) × · · · × K(G)

different attribute combinations. We treat each combination
as a different class in the classification loss function for the
fine tuning.

1Note that we solves a K(g)-class classification for each attribute group
g, while previous works solve K(g) binary classifications. Comparing these
two settings is beyond the scope of this paper.

Formally, for each i-th sample, we construct K(C′) di-
mensional attribute combination indicator l′Ci where each
dimension l′Ci,(k1,...,kG) is given by

l′Ci,(k1,...,kG) =

{
1 if (l1i,k1

= 1) ∧ ... ∧ (lGi,kG
= 1),

0 otherwise.
(3)

In this K(C′) dimensional indicator, only one dimension in
each i-th sample can be 1, and this dimension corresponds to
the combination label of different attributes.

In general, a training dataset has imbalanced labels and
several combinations are rare in the dataset. We discard the
combinations that satisfy

∑N
i=1 l

′C
i,(k1,..,kG) ≤ Nmin from

l′Ci,(k1,...,kG). By reshaping the label indicator, we obtain
K(C)(≦ K(C′)) dimensional combination-attribute label vec-
tor lCi = (lCi,1, ..., l

C
i,K(C)).

We add one fully connected layer for the K(C) dimensional
classification problem and minimize the softmax loss function
with the weighted cross entropy loss in Eqs.(1) and (2) (Fig. 2
(b)). We denote the loss of combination attributes by LC .

When relevant attributes to the combination are missing,
the combination labels are undefined. Further, we discard rare
combinations. Therefore, some label information is missing
in the combination-attributes and hence not used in the fine-
tuning. To circumvent this problem, we jointly minimize the
combination-attribute classification and multi-attribute classifi-
cation loss functions (Fig. 2 (a) and (b)). The total loss function
for our fine-tuning is defined as follows

L = αLC + (1− α)
1

G

G∑
g=1

Lg, (4)

where 0 ≤ α ≤ 1 is a parameter to control the contribution of
combination-attribute and multi-attribute classification losses.

Backpropagation is used to learn the parameters of the
CNN 2. Since the lower layers are shared for each attribute,
the sum of the losses coming from all attributes are propagated
to optimize the lower layers of the CNN.

IV. SETTINGS FOR FINE-TUNING

A. Pedestrian attribute dataset
We use Pedestrian Attribute (PETA) dataset [20] which is

the largest public dataset for pedestrian attribute recognition.
The dataset consists of 19,000 images with 61 annotated
attributes. The images in the PETA dataset are extracted from
the 10 public datasets for person re-identification. Since our
objective is to learn transferable CNN features from different
datasets, we conduct fine-tuning on different datasets from
the dataset for evaluating re-identification performances. For
example, when evaluating the performance of VIPeR dataset
in Sec.IV, we exclude VIPeR dataset from the PETA dataset
and the remaining 9 datasets are used for fine-tuning.

From all the annotated attributes, we manually selected
subsets of attributes and made 7 groups of mutually exclusive

2Not all samples have labels in all classification problems. If the label is
missing, such data are ignored when minimizing the loss function.
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TABLE I
GROUP OF MUTUALLY EXCLUSIVE ATTRIBUTES.

Group (g) Attributes K(g)

Gender male, female 2
Age less 15, 15-30, 31-45, 46-60, over 60 5

Luggage backpack, other, folder, luggage case 7
nothing, plastic bags, suitcase

UpperBody Clothing sweter, tshit, suit, jacket, no sleeve, other 6
UpperBody Color black, blue, brown, green, grey 11

orange, pink, purple, red, white, yellow
LowerBody Clothing suit, shorts, shirt skirt, long skirt 8

trousers, hot pants, jeans, capri
LowerBody Color black, blue, brown, grey, pink, red, white, yellow 8

attributes (G = 7); Gender, Age, Luggage, UpperBody Cloth-
ing, UpperBody Color, LowerBody Clothing and LowerBody
Color (Table I). Attribute groups related to Footwear, Hair
and Accessory are not used since they are too localized in an
image. In addition, rare attributes that are annotated in less
than 10 persons are not used. There are several persons who
have more than two labels in the each attribute group, e.g.,
black and white in UpperBody Color group. Since such a case
is rare and we randomly labeled by one of the attribute labels.

B. Setup of fine-tuning
We implement our method in the Caffe framework [30].

The input layer of the AlexNet3 is 227×227 pixels. Fol-
lowing the previous works [11], [26], we resize all training
images into 256×256 pixels and randomly crop 227 × 227
sub-windows. For test time, we deterministically resize the all
input images to 227×227 pixels. We follow the instruction of
Caffe; we start the last fully connected layer from random
weights, and all of the CNN parameters except the last layer
start from the pre-trained AlexNet. We increase the learning
rates of fully connected layers (FC6, FC7 and FC8) 10 times
larger than the convolutional layers. We conduct the fine-
tuning with batch size 256. We perform data augmentation by
horizontal mirroring and random cropping. The initial learning
rate is set to γ = 0.0001 and we decrease the learning rate
by every 20,000 iterations as γnew = 0.1 ∗ γ. The fine-tuning
typically takes 50,000 iterations to coverage (about 4 hours on
a NVIDIA GTX TITAN X GPU).

V. EXPERIMENTS

A. Setup
We evaluate the performance of the fine-tuned CNN fea-

tures using four person re-identification datasets; VIPeR [31],
CUHK01 [32], PRID450S [5] and GRID [33]. VIPeR contains
632 person image pairs captured at outdoor with different
viewpoints and illumination conditions. CUHK01 contains
971 person image pairs captured on a university campus.
PRID450S contains 450 image pairs captured by two different
surveillance cameras. GRID contains 250 image pairs captured
on underground station and includes additional 775 images
that do not belong to the person of 250 image pairs.

We follow the experimental condition with the single shot
settings which are commonly used in previous works [31], [3],
[22]. Specifically, we randomly divide each of the datasets

3https://github.com/BVLC/caffe/tree/master/models/bvlc alexnet

into training and test sets containing half of the available
individuals. The number of probe images is equal to the gallery
images in all datasets. Note that for GRID dataset, we add
additional 775 images into the gallery set. The evaluation
procedure is repeated 10 times and we report the average
Cumulative Matching Characteristic (CMC) curves.

We extract a 4,096 dimensional feature vector from the
FC6 layer of CNN and normalize the L2 norm of the feature
vector. We apply Cross view Quadratic Discriminant Analysis
(XQDA) [2] for metric learning. The XQDA simultaneously
learns a discriminant metric and low dimensional subspace and
its latent dimension can be automatically tuned.

B. Performance Analysis on VIPeR
We analyze the parameters of the fine-tuning on VIPeR

dataset. As default settings, we use parameter α = 0.5,
threshold Nmin = 5, the number of attribute groups for
combine r = 7, the FC6 layer for feature extraction, and
iteration number 50,000.
Parameter α. Fig. 3(a) shows the performances with varying
α. When the combination-attribute loss is not used for the
fine-tuning (α = 0), the rank-1 rate is 39.6%. When the fine-
tuning is conducted only using the combination-attribute loss
(α = 1), the rank-1 rate is 39.2%. When 0.1 ≤ α ≤ 0.9, the
rank-1 rates are better than α = 0 or 1 by 1.2-4.1%. These
results validates our addition of combination-attribute loss in
the fine-tuning.
Iteration number. Fig. 3(b) reports the rank-1 rate per itera-
tion number of the fine-tuning. The performance of person
re-identification is evaluated by CNN features every 5,000
iterations. The performances using both the combination-
attribute and the multi-attribute losses for fine-tuning consis-
tently outperform those of only using the multi-attribute loss.
Combination number r. Fig. 3(c) shows the rank-1 rates
when different subsets of 7 attribute groups are used for
combination labels. All the 7 attribute groups are used for
multi-attribute loss, and only the combination-attribute loss
is changed. For each r, we learn CNNs for all the possible
subsets in the 7Cr combinations and report their means and
standard deviations. r = 1 represents that the combination
attribute loss is not used. As to increase r, performances
increase and they saturate around r = 5, 6 and 7. This may be
because while the increase of the combination attributes makes
the attribute-combination label to be more person specific
information, it decreases generalization ability because higher
r reduces the number of training images per each combination-
attribute label.
CNN layers. Fig. 3(d) reports the rank-1 rates of different
CNN layers. For each feature vector of all layers, the extracted
feature vectors are L2 normalized and XQDA metric learning
is adopted. It can be seen that the lower layers yield better
results when fine-tuning is not conducted. This is because the
higher layers are more sensitive to semantic information [13]
and there is large disparity among VIPeR and ImageNet in the
important semantic information. By conducting fine-tuning,
the performance of all layers except the first layer improves

2432



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Alpha

39

40

41

42

43

44
R

a
n

k
-1

  
ra

te
 (

%
)

(a) Parameter α

0 2 4 6 8 10

Iteration ×10
4

37

38

39

40

41

42

43

R
a

n
k
-1

 r
a

te
 (

%
)

Comb.+Multi
Multi

(b) Iteration number

1 2 3 4 5 6 7

r

39

40

41

42

43

R
a

n
k
-1

 r
a

te
 (

%
)

(c) Combinaition number r

C1 C2 C3 C4 C5 FC6 FC7

Layer

15

20

25

30

35

40

45

R
a

n
k
-1

 r
a

te
 (

%
)

ImageNet
Multi
Comb.+Multi

(d) CNN layer

Fig. 3. Performance analysis of the CNN features on VIPeR dataset.

drastically. The performance of the FC6 layer is higher than
the FC7 layer. This may be because the person re-identification
needs to distinguish persons who have the same attributes
but have different appearances. The low level information
contained in the FC6 layer would be also useful.

C. Performance Comparison
We then compare the performance of the proposed features

on the four datasets and show the results in Table II and Fig. 4.
CNN features. Table II (a) shows the comparison of CNN
features. For all features, the L2 norm normalization and
XQDA metric learning are applied. FT-CNN (Comb.+Multi)
is the proposed Fine-tuned CNN and FT-CNN (Multi) is the
CNN fine-tuned with only the multi-attribute loss functions.
CNN (ImageNet) is the pre-trained CNN on ImageNet. The
fine-tuning of CNN features on pedestrian attribute dataset
largely improves the performance of CNN features, the rank-
1 rates of FT-CNN (Multi) are better than those of CNN
(ImageNet) by 19.9%, 16.3%, 17.8% and 16.4% on VIPeR,
CUHK01, PRID450S and GRID, respectively. The attribute
combination labels further improve the performance of FT-
CNN (Multi) by 2.9%, 2.0%, 2.4% and 0.6%, respectively on
the datasets.

The FT-CNN (Person) shows the results when the person
identity labels are used for fine-tuning on the PETA dataset.
Since for most of the persons in the PETA dataset, the number
of training samples per person is less than 3 and the number of
images per each class is not sufficiently large. Therefore, our
attribute based fine-tuning performs better than the learning
with person identity labels in the PETA dataset.

The Feature Fusion Net (FFN) [22] uses the FC9 layer,
which is more upper layer than the FC6 layers of our CNN.
FFN also contains ELF16 features in its representation. The
extracted features of FFN were downloaded from the authors’
Web page, and we applied XQDA metric learning. Our CNN
features achieve better rank-1 rates than FFN by 10.7%,
14.4% and 6.6% on VIPeR, CUHK01 and PRID450S datasets,
respectively. FFN is trained on Market-1501 dataset [34]

which contains 38,195 images with 1,501 person identity
labels, which are more discriminative information than at-
tribute labels. When we performed fine-tuning of our CNN
on this dataset with person labels, the rank-1 rates on VIPeR,
CUHK01, PRID450S and GRID were 46.3%, 49.9%, 56.5%
and 24.3%, respectively. We speculate that the use of lower
layer (FC6) in our features largely contributes to outperform-
ing FFN.
State-of-the-art. Table II (b) lists performances of several
state-of-the art methods. Currently, the Gaussian of Gaus-
sians (GOG) descriptor with XQDA metric learning achieves
the best results [3]. Although the performances of FT-CNN
features are no better than those of GOG, they significantly
outperform the second best descriptor Local Maximal Oc-
currence (LOMO) [2] feature on GRID dataset and yield
slightly lower performances on other datasets. On VIPeR and
PRID450S, FT-CNN exhibits largely better performances than
the improved deep learning architecture [10]. This might be
because these datasets lack enough training samples for deep
learning, whereas our CNN is fine-tuned on a large auxiliary
dataset and we can apply metric learning, which works well
with a relatively small sampled training set.
Fusion with a hand crafted feature. Table II (c) lists the
performances when CNN features are combined with hand
crafted features. We simply concatenated FT-CNN and LOMO
features and applied XQDA metric learning. Previously, the
FFN combined with LOMO and Mirror KMFA [7] achieved
the best performances [22]. Since our CNN features out-
performs FFN in Table II (a), the combination of FT-CNN
and LOMO achieves better results than FFN and LOMO.
The Mirror KMFA metric learning uses a kernel embedding
of feature vectors, which requires more computational cost.
Besides, XQDA metric learning works on the original feature
space. Our method achieves the best results even combined
with simpler metric learning.

VI. CONCLUSION

We have proposed to conduct CNN fine-tuning using a
new loss function for classifying combinations of pedestrian
attributes. The proposed method improves the discriminative
ability of attribute-based CNN features with no additional
cost to the annotator. Experimental results on four challenging
person re-identification datasets demonstrated the high perfor-
mance gain by conducting fine-tuning on a pedestrian attribute
datasets and the effectiveness of the proposed combination-
attribute loss function was confirmed. As a result, CNN
features achieved competitive performances to well-designed
hand-crafted descriptors.

For further improvements of the CNN features, we plan to
increase the number of training samples by combining person
re-identification datasets and pedestrian attributes datasets. We
will also investigate the combination of classification losses for
person identity and attribute combinations labels.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI 15K16028.

2433



TABLE II
PERFORMANCE COMPARISON WITH DIFFERENT METHODS. CMC@RANK-r(%). (a): CNN FEATURES, (b): STATE-OF-THE-ART RESULTS, (c):

COMBINATIONS OF CNN FEATURES AND HAND-CRAFTED FEATURES. * INDICATES THE RESULTS OBTAINED BY US.
VIPeR CUHK01 PRID450S GRID

Methods Reference r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20

(a)

FT-CNN (Comb.+Multi) + XQDA Ours 42.5 72.0 83.0 92.0 46.8 71.8 80.5 88.2 58.2 83.5 90.0 94.3 25.2 45.5 54.1 64.6
FT-CNN (Multi) + XQDA baseline 39.6 69.4 81.5 90.6 44.8 71.1 79.6 87.9 55.8 81.2 89.2 93.8 24.6 43.9 54.2 65.2
FT-CNN (Person) + XQDA baseline 37.9 67.6 78.5 88.4 44.0 68.3 77.8 86.2 56.4 81.0 88.4 93.2 23.9 43.1 52.9 63.0

FFN + XQDA WACV2016* [22] 31.8 61.0 73.7 85.3 32.4 55.9 66.5 76.6 51.6 78.0 86.0 93.1 - - - -
CNN (ImageNet) + XQDA baseline 19.7 44.5 58.1 72.9 28.5 52.3 63.6 74.9 38.0 63.4 75.3 85.5 8.2 21.1 29.8 39.5

(b)

GOGFusion+XQDA CVPR2016 [3] 49.7 79.7 88.7 94.5 57.8 79.1 86.2 92.1 68.4 88.8 94.5 97.8 24.7 47.0 58.4 69.0
LOMO+XQDA CVPR2015 [2] 40.0 - 80.5 91.1 50.0 75.3 83.4 89.5 61.4 83.9 91.0 95.3 16.6 - 41.8 52.4
Improved Deep CVPR2015 [10] 34.8 63.6 75.6 84.5 47.5 72.1 80.5 88.5 34.8 63.7 76.2 81.9 - - - -

SCNCD ECCV2014 [1] 37.8 68.5 81.2 90.4 - - - - 41.6 68.9 79.4 87.8 - - - -
DALF ICPR2014 [4] 35.4 62.0 73.5 84.1 - - - - - - - - 18.1 37.3 46.2 59.8

(c)
FT-CNN (Comb.+Multi) + LOMO + XQDA Ours 52.1 79.6 89.2 95.0 62.3 83.7 90.0 94.3 71.5 90.6 94.7 97.5 29.1 49.4 59.0 69.4

FFN + LOMO + Mirror KMFA WACV2016 [22] 51.1 81.0 91.4 96.9 55.5 78.4 83.7 92.6 66.0 86.8 92.8 97.0 - - - -
FFN + LOMO + XQDA WACV2016* [22] 47.8 76.7 86.7 93.6 59.8 81.6 87.9 93.6 68.8 88.6 93.5 97.2 - - - -

MetricEnsemble (CH,SIFT,LBPs,CNN) CVPR2015 [6] 45.9 77.5 88.9 95.8 53.4 76.4 84.4 90.5 - - - - - - - -
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Fig. 4. CMC curves of VIPeR, CUHK01, PRID450S and GRID datasets.
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