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APPENDIX

A. MSN in the Lovrić embedding

We confirm MSN is inherently adopted in the Gaussian matrix P
∈ Sym+

d+1 of Lovrić et al. [29] as follows:
Let G ∈ Sym+

d+1 be an SPD matrix excluding the scal-
ing term of P and let G(i, j) be its (i, j)-th block,

i.e., G =

[
Σ+ µµT µ

µT 1

]
=

[
G(1, 1) G(1, 2)
G(2, 1) G(2, 2)

]
and P =

|Σ|−
1

d+1G. The property of the submatrix9 indicates that

|G| = |G(2, 2)||G(1, 1)−G(1, 2)G−1(2, 2)G(2, 1)|
= |1||Σ+ µµT − µ(1−1)µT |
= |Σ|. (1)

Consequently, we have P = |G|−
1

d+1G = η(G).

B. Justification of the bias removal

One motivation of HGDs is the importance of the mean informa-
tion of pixel features. The Gaussian and ZmG embeddings include
the mean information within each patch/region of an image. In the
norm normalization step in §4.2, the E-L2 and I-L2 normalizations
remove the biased components of the training set, which are the
mean information among different images. One question arises:
Do the bias removal steps in the norm normalization contradict
with the importance of the mean information? In this appendix,
we explain that this contradiction occurs in neither of the cases of
the E-L2/I-L2 normalizations.

Bias removal in the E-L2 normalization.
Let {zi}NT

i=1 be a set of GOG (or ZOZ) descriptors, z̄ =
1

NT

∑NT

i=1 zi be their bias component and {z′
i = zi − z̄}NT

i=1

be the descriptors after the bias removal. For any (i, j) pair of
descriptors in the set, we see that:

z′
i − z′

j = zi − z̄ − (zj − z̄) = zi − zj . (2)

Because the descriptors zi and zj include both the mean and
covariance information of the respective images, the bias removal
step retains their difference information.

Bias removal in the I-L2 normalization.
Let {Ai}NT

i=1 be a set of the region Gaussian matrices of GOG
or ZOZ. In the I-L2 normalization, the half-vectorized repre-
sentation is given by z′ = vec

(
log

(
M− 1

2AM− 1
2

))
. From

Lemma 1 in Ref. [82], log(M− 1
2AM− 1

2 ) can be approximated
by M− 1

2 log(A)M− 1
2 . Thus, we have

z′
i − z′

j

≈ vec
(
M− 1

2 log(Ai)M
− 1

2

)
− vec

(
M− 1

2 log(Aj)M
− 1

2

)
= vec

(
M− 1

2 (logAi − logAj)M
− 1

2

)
. (3)

Because the matrices logAi and logAj contain both the mean and
covariance information of the respective images, logAi − logAj

completely retains their difference information. Because M− 1
2

is a full-rank matrix, the transformation M
1
2 (·)M

1
2 in the last

equation in Eq.(24) does not nullify the information. In this way,
z′ retains the information about the difference in both the mean
and covariance of the respective images.

9. See the matrix cookbook http://www2.imm.dtu.dk/pubdb/p.php?3274

TABLE 5
Computational complexity for extracting GOG/ZOZ in one color space

in each step: (i) Pixel feature extraction. (ii)/(iii) Patch Gaussian
construction/flattening. (iv)/(v) Region Gaussian construction/flattening.

Time Complexity Space Complexity
Step GOG ZOZ GOG ZOZ
(i) O(Nd) O(Nd) O(Nd) O(Nd)
(ii) O

(
Nd2

)
O
(
Nd2

)
O
(
Nd2

)
O
(
Nd2

)
(iii) O

(
Np (d + 1)3

)
O
(
Npd

3
)

O
(
Np (d + 1)2

)
O
(
Npd

2
)

(iv) O
(
GNqm

2
)

O
(
GNqm

′2) O
(
Npm + Gm2

)
O
(
Npm

′ + Gm′2)
(v) O

(
G (m + 1)3

)
O
(
Gm′3) O

(
G (m + 1)2

)
O
(
Gm′2)

C. Computational complexity

Table 5 lists the computational complexities of each step for
GOG/ZOZ in one color space. The total time/space complexities
are the summation/maximum complexity of each step.

We show the details of each step for GOG as follows: (i) The
pixel feature extraction costs O(Nd) floating-point operations
and storages because d-dimensional features are extracted from
N pixels. (ii) The complexities for constructing the patch Gaus-
sians are dominated by the extraction of d-dimensional covari-
ance matrices through integral images with N pixels. This costs
O
(
Nd2

)
floating-point operations and storages. (iii) Flattening

a patch Gaussian involved in a principal matrix logarithm that
requires an eigenvalue decomposition of a (d + 1)-dimensional
matrix. This costs O

(
(d+ 1)3

)
floating-point operations and

O
(
(d+ 1)2

)
storages. The flattening process is carried out in

each of Np patches, thus Np is multiplied. (iv) The complexities
for constructing the region Gaussian matrices are dominated by
the extraction of m-dimensional covariance matrices. Because the
integral images are efficient only when the number of overlapping
regions are large, we directly calculate the covariance matrix by
Eq.(11). For each of G regions, it costs O

(
Nqm

2
)

floating-point
operations where Nq is the number of patches in a region G. In ad-
dition, it costs O(Npm) storages to maintain the input of the patch
Gaussian vectors and O

(
Gm2

)
storages to maintain the G output

matrices. (v) The region Gaussians are flattened for (m + 1)-
dimensional matrices for G regions. It costs O

(
G(m+ 1)3

)
floating-point operations and O

(
Gm2

)
storages. Note that in

the case of the I-L2 normalization, (m + 1)-dimensional ma-
trices are multiplied by each of the region Gaussian matrices
before the flattening operation. Because a multiplication between
(m+ 1)-dimensional matrices costs O

(
(m+ 1)3

)
floating-point

operations and O(m+ 1) storages, this step requires the same
complexities as the step (v). The complexities for ZOZ are derived
similarly.

In summary, the complexities of each step are of a linear order
w.r.t. spatial parameters (N,Np, Nq , and G) and of a square or
cubic order w.r.t. the dimensionality of pixel features d or patch
Gaussian vectors m or m′.

Compared with other handcrafted descriptors, the complexities
of GOG/ZOZ are higher than LOMO [11], whereas they are lower
than gBiCov [34]. The complexities of LOMO are of a linear
order w.r.t. spatial parameters and the dimensionality of pixel
features because LOMO takes maximal values of local histograms
along horizontal strips. gBiCov calculates the similarities of patch
covariance matrices between nearby scales of biologically inspired
features (BIF) images. A similarity calculation step requires an
eigendecomposition. Thus, these complexities are similar to the
steps (i)-(iii) of HGDs, but are repeated for each of S BIF images.
Hence, the complexities of gBiCov are about S times of the steps
(i)-(iii) of HGDs. Note that the running times of the steps (iv)-(v)
of HGDs are nearly the same as steps (ii)-(iii) because G is much
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(a) PoEM (b) LERM (c) MPN
Fig. 13. Comparison of eigenvalue transformation: (a) PoEM; (b) LERM;
(c) MPN.

smaller than Np, whereas m is much larger than d.

Running time
We implemented HGDs in MATLAB10 with MEX functions for
calculation of the covariance matrices, and ran on a PC equipped
with an Intel Xeon E5-2687W v3 @3.1 GHz CPU.

The training time and memory usage for the I-L2 normaliza-
tion on one training split of the VIPeR dataset were approximately
10.7 and 7.2 minutes and 4 and 3.8GB for GOG and ZOZ,
respectively. On other datasets, they increase linearly against the
number of training samples.

The running time to extract GOG and ZOZ with the E-L2/I-
L2 normalizations was approximately 0.92/1.03 and 0.77/0.85
seconds per one image, respectively. The memory usage of the
feature extraction was below 70 MB, excluding approximately 500
MB required to run the MATLAB environment itself.

D. Comparison with the matrix power normalization
The use of an appropriate Riemannian metric plays a central role
in HGDs. Recently, Matrix Power Normalization (MPN) [65]
has shown superiority against LERM on CNN feature embed-
dings [64], [66]. In an interpretation of the Riemannian metric,
MPN corresponds to the Power Euclidean Riemannian Metric
(PoEM) [67]. This appendix employs these methods in the frame-
work of HGDs and compares the performance with LERM and
MSN.

PoEM and MPN.
In PoEM, the distance between two symmetric positive semi-
definite matrices11X , Y ∈ Sym+

e is defined as follows:

dγ(X,Y ) =
1

γ
∥Xγ − Y γ∥F , (4)

where Xγ is the MPN defined as

Xγ = UDiag(λγ
i )U

T, γ > 0. (5)

Here X= UDiag(lnλi)U
T is an eigendecompostion of X and

γ is a parameter of a positive real number.
It is known that PoEM approximates LERM as follows [65]:

limγ→0 dγ(X,Y ) = ∥logX − logY ∥F . This correspondence
is becasue dγ(X,Y ) = ∥ 1

γ (X
γ − I) − 1

γ (Y
γ − I)∥F , where

1
γ (X

γ − I) = UDiag
(
λγ
i −1
γ

)
UT and limγ→0

λγ
i −1
γ = lnλi.

Thus, we define the associated approximate tangent space map-
ping of PoEM as the following equation:

logX ≈ 1

γ
(Xγ − I). (6)

10. Will be released at http://www.i.kyushu-u.ac.jp/∼matsukawa/ReID.
html.

11. PoEM allows positive and zero eigenvalues; thus it is defined for
symmetric positive semi-definite matrices.
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Fig. 14. Comparison of Riemannian metrics on the VIPeR dataset. The
numbers of the MPN/PoEM are the parameters (γ, γG ). The numbers
on the CMC curves indicate the rank-1 rates.

A notable property of MPN and PoEM is that they allow zero
eigenvalues. Following the previous work [65], we use MPN and
PoEM without regularizing the SPD matrix. Because LERM is
sensitive to small eigenvalues, we use the regularizer ϵ for LERM.

Fig. 13 shows how an eigenvalue is transformed by the param-
eters for PoEM, LERM, and MPN. PoEM and LERM reverse the
order of the original eigenvalues and magnify the effects of small
eigenvalues. Fig. 13 (a) shows that as γ increases, PoEM reduces
the magnifying effects of a small eigenvalue of a logarithmic
function. Fig. 13 (b) shows that ϵ for LERM also limits the
smallest values in a transformed eigenvalue, and this behavior is
similar to the effects of γ in PoEM. In contrast to PoEM and
LERM, MPN reserves the order of original eigenvalues. Fig. 13
(c) shows that a larger positive value is transformed into a larger
value in MPN.

We evaluate the performance of GOG and ZOZ when we use
MPN and PoEM instead of LERM. We normalize the features by
the E-L2 normalization without PN and evaluate the performance
with the XQDA metric. We examine the best parameters for patch
and region Gaussians (γ, γG) from all combinations of γ, γG ∈
{0.5, 0.25, 10−1, 10−2, 10−3, 10−4}. Based on these results, we
use (γ, γG) = (0.1, 0.1). Additionally, following the previous
work [65], we also use (γ, γG) = (0.5, 0.5). For reference, we
show the performance of LERM and MSN which use (ϵ, ϵG) =
(10−4, 10−2). Fig. 14 shows the results on the VIPeR dataset.

The results indicate that: (1) PoEM shows comparable perfor-
mance to LERM. This result is probably because the transformed
eigenvalues are similar between PoEM (γ = 0.1) and LERM
(ϵ = 10−4) (Fig. 13 (a) and (b)). In addition, LERM with
MSN outperforms PoEM. This result is because PoEM only
approximates LERM and has no ability to adjust the diagonal
matrix elements as in MSN. (2) The performance of MPN is
slightly inferior to that of PoEM and LERM. The difference
between the superiority of MPN on the embedding of CNN
features [64], [66] is probably due to the difference of the input
features. CNN captures the high-level concept of images, and the
higher eigenvalues of feature distribution might be significant. In
contrast, HGDs use low-level color and gradient features, and thus
a subtle difference in feature distribution might be significant to
distinguish different persons.

E. Comparison with other Gaussian embeddings
This appendix employs other Gaussian embeddings to the base
embedding of HGDs and compares their performances.

The Lovrić embedding [29] includes a mean vector and a
covariance matrix in one SPD matrix. To examine the effectiveness
of the joint embedding, we carry out the comparison with a simple
concatenation of the mean vector and the covariance matrix.
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Fig. 15. Comparison of Gaussian embeddings on the VIPeR dataset:
The numbers on the CMC curves indicate the rank-1 rates.

Additionally, we use two types of Lie group embeddings [55],
both types are based on a subgroup of (d+ 1)-dimensional upper
triangular matrices A+(d + 1). The first type, Direct Embedding
(DE), maps A+(d + 1) into a linear space via matrix logarithm.
Within DE, we evaluate the following two embeddings, DE using
Full-covariance matrices (DE (Full)) and its analytic simplification
for Diagonal-covariance matrices (DE (Diag)). The second type,
Indirect Embedding (IE), first maps A+(d+ 1) into Sym+

d+1 via
coset and polar decomposition and then into a linear space by
LERM. For IE, we use two embeddings, Left coset (IE (Left)) and
Right coset (IE (Right)) embeddings. The representations of these
compared embeddings in Euclidean space are defined as follows:

• Mean + Cov :=
[
µT vec(logΣ)T

]T
,

• DE (Diag) :=
[
lnσ1, . . . , lnσd,

µ1lnσ1

σ1−1 , . . . , µdlnσd

σd−1

]T
,

• DE (Full) := log

[
L−T µ
0T 1

]
,

• IE (Right) := log

[
L−1L−T L−1µ

µTL−T µTµ+ 1

] 1
2

,

• IE (Left) := logG
1
2 = log

[
Σ+ µµT µ

µT 1

] 1
2

.

Here σi is a square-root of the i-th diagonal element of Σ and L
is the Cholesky factor of Σ−1. We normalize the descriptors by
the E-L2 normalization without MSN and PN, and compare the
performance with XQDA metric. Fig. 15 shows the results on the
VIPeR dataset.

The results indicate that: (1) The joint Gaussian embeddings
(IE (Left), ZmG, Lovric) outperform Mean + Cov. These results
confirm that considering the geometry of Gaussian distribution
is more significant than separately considering the geometry of
the mean vectors and covariance matrices. (2) The diagonal
Gaussian embedding (DE (Diag)) shows the lowest performance.
These results show that the diagonal assumption of covariance
matrices overly simplifies the distribution of pixel features for
HGDs. (3) Among the Lie group embeddings, IE (Left) shows
the best performances. When applied to the global embedding,
DE (Full) and IE (Right) show slightly lower performance than
IE (Left), whereas DE (Full) showed slightly higher performance
than IE (Right). These trends are consistent with the results of Li et
al. [55]. (4) Lovrić and IE (Left) produce mostly the same results.
These results are because the matrix logarithm on square-rooted
matrix results in only the rescaled version of the matrix logarithm,
i.e., logG

1
2 = 1

2 logG. Because the E-L2 normalization cancels
the effects of 1

2 , the results of LE (Left) and Lovrić are the same in
the case of global embedding. In the hierarchical embedding, the
E-L2 normalization cancels the effects of 1

2 on region Gaussians,
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Fig. 16. Analysis of feature extraction layers of ResNet on the VIPeR
dataset: The numbers on the CMC curves indicate the rank-1 rates.

whereas the effects on patch Gaussians causes slight changes in
performance.

F. Details of ResNet features

We trained a 50-layered ResNet using a triplet loss function.
For the implementation, we used the default setting of open-
reid12 which is a PyTorch re-implementation of the paper [78].
Our focus is to investigate if HGDs work complementary with
CNN features. Because several datasets lack a sufficient amount
of training samples for deep learning, we adopt the metric learning
approaches [14], [45], which use CNN features trained on another
large-scale dataset. We trained the network on the training split of
the Market-1501 dataset.

We examine suitable layers for feature extraction. A 50-
layered ResNet consists of one convolutional layer (conv1), four
bottleneck building blocks13 (conv2 x, conv3 x, conv4 x, and
conv5 x), one average pooling layer (avgpool), and one fully
connected layer [77]. In open-reid, input images are resized to
256×128 pixels and one fully connected layer (fc1) is added
before the last fully connected layer (fc2).

We modified the code to access the output of
these layers/blocks. The convolutional layer and the
bottleneck building blocks output feature maps. The
sizes (height × width × feature dimension) of them
are 128×64×64 (conv1), 64×32×256 (conv2 x),
32×16×512 (conv3 x), 16×8×1,024 (conv4 x), and 8×4×
2,048 (conv5 x), respectively. To form feature vectors from the
feature maps, we summarize features along seven horizontal strips
determined in a similar way as HGDs by average pooling. For
the implementation, we use the avgpool2d function of PyTorch,
in which the height and width of the pooling kernel correspond
to the one-quarter of the feature map height, and the feature
map width, respectively. We set the strides in height and width
directions of the avegpool2d function to the half of the kernel
height, and the kernel width such that each horizontal pooling
area overlaps with another area by half. We reshape the outputs of
the avgpool2d function (7×1× feature dimension) into vectors.
In this way, we obtain 448-dimensional feature vectors for conv1
layer, and 1,792, 3,584, 7,168, and 14,336-dimensional feature
vectors for conv2 x, conv3 x, conv4 x, and conv5 x blocks,
respectively. Other layers, avgpool, fc1, and fc2 directly output
2,048, 1,024, and 128-dimensional feature vectors, respectively.

Subsequently, we normalize the L2 norm of the feature vectors
after removing the mean values on the training set of each applied
dataset. We evaluate individual performances of each layer with

12. https://github.com/Cysu/open-reid
13. A bottleneck building block consists of several convolutional layers and

a skip connection [77]. We use the output of each block.
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XQDA metric. Additionally, we compare the performance when
combined with the GOG descriptor. Fig. 16 shows the results on
the VIPeR dataset.

The results indicate that: (1) When using the ResNet features
alone, conv4 x features perform the best. (2) When combined with
the GOG descriptor, the features of the upper layers outperform
the conv4 x features. We also combined CNN features with the
ZOZ descriptor, and the trends were similar. These results show
that HGDs are highly complementary with high-level features of
CNNs. Features of fully connected layers may overfit the trained
dataset of CNN. Experimental results showed the conv5 x features
performed the best when combined with the GOG descriptor. On
the basis of these observations, we used the conv5 x features for
the baseline CNN features of ResNet.

G. Parameter of XQDA
XQDA contains a regularization parameter of a covariance matrix
to learn the Mahalanobis metric [11]. It is suggested that when
the norm of features is normalized, the regularization parameter
10−3 is effective. In the comparison in §5.3, we evaluate the
case when the norm is not normalized. In addition, without the
bias removal methods, a large bias that exists in HGDs results in
the sample distances of L2 normalized features becoming overly
small. Additionally, PN changes the distribution of the sample
distances. We confirmed the default setting in the public code of
XQDA causes low performance for these normalizations.

For each normalization, we investigated the best parame-
ters that generally work well among different datasets from the
range {10−5, 10−4, . . . , 101}. The best parameters for {None,
L2, E-L2, E∗-L2, I-L2} were {10−1, 10−4, 10−3, 10−3, 10−3},
respectively, without PN, and {100, 10−4, 10−3, 10−3, 10−3},
respectively, with PN. We used these values in the evaluations.
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