
Fast disriminative pattern mining usingsparsity-induing loss funtionsNo Institute GivenKeywords: disriminative pattern mining, graph mining, sparsity, supportvetors, lassi�ation, regressionAbstrat. Apriori-based mining algorithms enumerate frequent patternseÆiently, but the resulting large number of patterns makes it diÆultto diretly apply subsequent learning tasks. Reently, eÆient iterativemethods are proposed for mining disriminative patterns for lassi�a-tion and regression. These methods iteratively exeute disriminativepattern mining algorithm and update example weights to emphasize onexamples whih reeived large errors in the previous iteration. In this pa-per, we study a family of loss funtions that indues sparsity on exampleweights. Most of the resulting example weights beome zeros, so we aneliminate those examples from disriminative pattern mining, leading toa signi�ant derease in searh spae and time. In omputational exper-iments we ompare and evaluate various loss funtions in terms of theamount of sparsity indued and resulting speed-up obtained.1 IntrodutionStrutured data is beoming inreasingly popular in data mining and mahinelearning. Muh of the worlds' interesting data are not vetorial (tabular) data,but strutured data suh as trees, sequenes and graphs. Examples of suh datainludes HTML and RNA seondary strutures as trees, time series data as se-quene, hemial ompounds and soial networks as graphs. Inuened by thepioneering work of [1℄ for mining frequent assoiation rules, various frequentpattern mining algorithms are developed for various lass of strutured data;suh as LCM [17℄ for itemsets, TREEMINER [21℄ for trees, Pre�xSpan [10℄ forsequenes and gSpan [20℄ for graphs. These frequent struture enumeration al-gorithms give us a foundation to apply basi statistial learning tools on theobtained set of patterns. However, it is often argued that the number of frequentpatterns is too large for the subsequent learning tasks, thus summarization of fre-quent patterns is neessary [19℄. A ommon heuristi to overome this diÆultyis to set support (frequeny of a pattern) high or maxpat (maximum patternsize) low to limit the number of resulting frequent patterns [18℄. More advanedapproahes attempt to mine disriminative graphs by using the labels of exam-ples as external information soure to prune the searh spae [2℄. Correlationor Information gain are typially employed to estimate the informativeness of

IIpatterns and prune uninteresting patterns. However, the set of patterns olletedby suh a two-step method is not optimal for di�erent learning tasks.More reently, substruture boosting approah has been suessfully appliedto di�erent learning tasks on various kinds of data inluding RNA seondarystruture lustering [16℄, video lassi�ation [9℄, and QSAR [12℄. These methodsombine statistial learning algorithms with pattern mining algorithms to di-retly mine disriminative patterns whih are optimal for the subsequent learn-ing task in an iterative fashion [7℄. The basi strategy is similar to ordinaryboosting where examples whih reeived large errors in the previous iterationare intensively learned in the next iteration. In eah iteration, one feature isadded to the solution set, and the weights for all the previously found featuresare updated. The algorithm onsists of two parts, namely, disriminative patternmining part whih searhes for the most disriminative pattern, and the learningpart whih omputes the example weights. In this paper, we study a family of lossfuntions that indue sparsity on example weights. The searh spae formed by
1

1

-1

-1

0.45

0.05

0.45

0.05

C C

C C

C Cl

C Cl

C

C

{}

C C

C C

C

C Cl

C

C Cl
0.45

0.05

-0.5

-0.05

1

1

-1

-1

0.5

0

0.5

0

C C

C C

C Cl

C Cl

C

C

{}

C C C Cl
0.5 -0.5

class weights examples search space
class weights examples search space

Fig. 1. Comparison of pattern mining with non-sparse example weights (left) to sparseexample weights (right). If sparsity is enfored, example weights nearby zero (suh asthose of the seond and the fourth example) on the left shrinks to zeros. Suh examplesan be eliminated from subsequent pattern mining, and the resulting searh spae forpattern mining shrinks from one on the left to the one on the right.both non-sparse weights and sparse weights is illustrated in Figure 1. If sparsityis enfored, example weights nearby zero (suh as those of the seond and thefourth example) on the left shrinks to zeros. Suh examples an be eliminatedfrom subsequent pattern mining, and the resulting searh spae for pattern min-ing shrinks from one on the left to the one on the right. Therefore we an expetthat pattern mining with sparse example weights is more eÆient than one withnon-sparse weights, and that we should fully exploit this property.In mahine learning literature, support vetor mahine (SVM) is known toahieve sparsity on the example weights, and only a small fration of examplesreeives non-zero weights (so-alled support vetors) [13℄. We propose to take fulladvantage of sparsity of support vetors for speeding-up pattern mining. Lending

IIIthe knowledge from sparse kernel learning methods [13℄, we study di�erent typesof loss funtions whih indue sparsity.This paper is organized as follows. In Setion 2, we briey review substrutureboosting algorithm to understand what makes the example weight sparse, andgive instanes of loss funtions whih do not have sparse solutions. Setion 3onsiders regression methods in terms of ability to ahieve sparsity on exampleweights. Setion 4 shows omputational results. Setion 5 onludes the paper.2 Review on substruture boosting for lassi�ationThis setion briey reviews substruture boosting algorithm. The substrutureboosting algorithm onstruts a linear model by progressively adding a featureat eah iteration. Our feature vetor is a binary indiator of patterns (Figure2), and a label yi is attahed to eah feature vetor. We represent the preseneor absene of the j-th pattern in the i-th graph by an indiator funtion whihreturns 1 if xi;j 2X, �1 otherwise, where X is a universe of patterns in a givendataset.
(-1,...,-1,1,-1,...,-1,1,-1,...)

B

A

A

B
A

AA

B

A

APatternsFig. 2. Feature spae based on subgraph patterns. The feature vetor onsists of binarypattern indiators.Suppose for a moment that we solve lassi�ation problem, then our lassi�eris represented as a linear ombination of patterns with orresponding weights;yi = sgn(pXj=1 xi;j�j);where yi 2 0; 1 is a binary target value of i-th graph, xi is a length p vetororresponding pattern presene/absene in the i-th graph, and � is a length pweight vetor to be learned. Note that the potential number of features p is quitelarge, so a large amount of memory is required when p is large. Therefore weregularize the weight vetor � with respet to `1 norm so that most of patternshave zero weights. By employing hinge loss for lassi�ation (Figure 3), ourobjetive funtion is written asmin� pXj=1 j�j j+ C nXi=1 241� yi pXj=1 �jxi;j35+ ;

IVwhere C is a regularization parameter and \+" indiates positive part. By in-troduing the slak variable �, we an formulate a linear programming problemorresponding to the above objetive funtion.min�;� pXj=1 j�j j+ C nXi=1 �i (1)s.t. yi pXj=1 xi;j�j + �i � 1; �i � 0 i = 1; : : : ; n: (2)Due to the high dimensionality of �, solving the above primal problem is hard,thus we onsider the equivalent dual problem;maxu nXi=1 ui (3)s.t. pXj=1 uixijyi � 1; j = 1; : : : ; p; (4)0 � ui � C; i = 1; : : : ; n: (5)This problem has a large number of onstraints orresponding to equation (4),but olumn generation algorithm [4℄ an eÆiently solve it by iteratively addingthe mostly violated onstraint. The onstraint to be added is determined bysolving the following olumn generation subproblem;j� = argmaxj nXi=1 uixijyi: (6)In our ase this is equivalent to �nding a pattern with the maximum absoluteweighted support by disriminative pattern mining. For eÆiently traversing thesearh spae, pruning of the searh spae is ruial. We employ the followingpruning ondition that makes use of target labels y as extra information soure,Theorem 1. [8℄ Let us de�ne�(x();j) = maxf2 Xfijyi=+1;xi;j=1gui � X̀i=1 yiui; 2 Xfijyi=�1;xi;j=1gui +X̀i=1 yiuig;where x();j denotes j-th pattern whih appears at least one in a given data. Ifthe following ondition is satis�ed,g� > �(x();j); (7)the inequality g(x0();j) < g� holds for any x0();j suh that x();j � x0();j . So we ansafely prune the parent nodes of x();j without losing the optimal pattern.A pseudoode of this substruture boosting algorithm for lassi�ation isshown in Algorithm 1.

VAlgorithm 1 Substruture boosting algorithm1: Initialization: X̂(0) = ;, u(0)i = 1=n, k = 02: loop3: Find the optimal pattern x� based on u(k)4: if termination ondition holds then5: break6: end if7: X̂ X̂ [Xj�8: Solve the restrited dual problem (4) to obtain u(k+1)9: k = k + 110: end loop2.1 Sparsity on example weightsNotie that when C ! 1, then solving (1) amounts to minimizing k�k1 whileignoring �. This ase is known as hard margin SVM whih does not have regu-larization on � at all. In the dual, C !1 orresponds to removing upperboundof u in equation (5); maxu pXj=1 uj : (8)s.t. pXj=1 uixijyi � 1; i = 1; : : : ; n; (9)The solution to this linear programming problem ours at a vertex of a poly-hedron, and most of the resulting u are zeros. Examples (data points) withnonzero weights u are known as support vetors in SVM literature [13℄. Due toKKT ondition, the following equations hold;ui0�yiXj xij�j � 1 + �i1A = 0; ui � 0; yiXj xij�j � 1 + � � 0;that is, either ui = 0 or yiPj xij�j � 1 + �i = 0 holds. In order to have moresparsity, more data points should satisfy ui = 0. Geometrially speaking, suh aregion orresponds to a at segment along the x axis in Figure (3).The longer the segment, the more sparsity is indued. Among loss funtionfor lassi�ation (Figure (3) left), only a hinge loss funtion turns out to induesparsity. Induing more sparsity is important in our ase beause examples withzero-weights an be eliminated from pattern mining. This e�et is already illus-trated in Figure 1. A �gure on the left do not have sparsity on example weights,while one on the right has sparsity on example weights; the seond and fourthexamples an be eliminated sine their examples weights are zero.However, the problem of hard margin SVM is that it does not allow anyerror points during training, whih is too restritive in pratie. Typially, the

VI
-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

lo
ss

y.f

binomial
exponential

squared
hinge

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

lo
ss

y-f

squared
huber

absolute
ε -insensitve

Fig. 3. Loss funtions for binary lassi�ation (left). Loss funtions for regression (right).Binomial deviane: log(1 + exp(�2yf)), exponential loss: exp(�yf), squared loss (y�f)2, hinge loss: (1� yf)+, absolute loss: jy� f j, �-insensitive loss jy� f j� and Huber'sloss: Æ2 (y � f)2 if jy � f j � Æ and Æ(jy � f j � Æ=2) otherwise.trade-o� between sparsity and the number of training errors is ontrolled by theregularization parameter C, whih is found by a grid searh from between 0 and1. �-SVM or its linear programming version (�-L1SVM) [4℄ provides us moresophistiated way of hoosing regularization parameter. The primal problem of�-L1SVM is written as follows;min�;�;� pXj=1 �j + 1n� nXi=1 �i � � (10)s.t. yi pXj=1 xi;j�j + �i � �; �i � 0; i = 1; : : : ; n; (11)where � is a regularization parameter hosen from between 0 and 1. Equivalentdual problem is maxu; � (12)s.t. nXi=1 yixijui � ; j = 1; : : : ; p; (13)nXi=1 ui = 1; 0 � ui � 1n� ; i = 1; : : : ; n:In the same way as in L1SVM, sparsity is enfored on example weights u aswe set � smaller, and reovers hard margin SVM in the limit � ! 0. Indeed� ontrols the sparsity of the solution [14℄, and n� is the lower bound of thenumber of support vetors [4℄. Regarding the regularization parameter �, thefollowing statements hold:Theorem 2 ([11℄). Assume that the solution of (10) satis�es � � 0.

VII1. � is an upperbound of the fration of margin errors, i.e., the examples withyi pXj=1 xi;j�j < �; i = 1; : : : ; n:2. � is a lowerbound of the fration of the examples suh thatyi pXj=1 xi;j�j < �; i = 1; : : : ; n:Below, we abbreviate � � L1SVM simply as L1SVM.2.2 Non-sparse example weights of AdaBoostIn this subsetion, we review AdaBoost [5℄ as an example of iterative learningalgorithm whih does not have sparsity on the example weights. AdaBoost iter-atively generates a sequene of hypothesis funtions to build a linear model thatmaximizes exponential loss (see Figure 3). The objetive funtion of AdaBoostis as follows.min�;� exp nXi=1 �i!s:t: yi pXj=1 xi;j�j � �i; �i � 0 i = 1; : : : ; n; �j � 0 j = 1; : : : ; pThe example weights of AdaBoost is updated by the following update rule [5℄.ui ui exp�� log�1� errerr � � I(yi 6= f(xi))� ; (14)where err stands for error rates of the urrent hypothesis. AdaBoost does nothave a regularization on �, and the resulting � is has no struture suh assparsity.3 Sparse substruture boosting for regressionThis setion deal with regression problem, so the target response value y takesreal value. Without loss of generality, below we assume that y is enter to zero.We ompare two regression methods; LASSO (Least Absolute Shrinkage Opera-tor) [15℄ that not indue sparsity and linear programming regression that induesparsity on example weights.LASSO employs least squared loss (Figure 3) and `1 regularization withrespet to a parameter vetor �. The LASSO regression is formulated by the

VIIIquadrati programming problem as follows,min�;� pXj=1 �j + C2 nXi=1 �2is:t: pXj=1 xi;j�j � yi � �i; yi � pXj=1 xi;j�j � �i; �i � 0 i = 1; : : : ; nwhere C is a regularization parameter. The dual of the LASSO ismaxu � 12C pXj=1 u2j + nXi=1 yiui; s:t:� 1 � uj nXi=1 yixi;j � 1; j = 1; : : : ; p:We an see that the example weights u is regularized with respet to `2-norm.`2-norm loates eah uj on the surfae of an p-dimensional Eulid ball, but noone uj beomes zero, so does not have sparsity. A sparse regression example isa linear programming regression(LPR) whih employs �-insensitive loss, and `1norm on a parameter vetor �. The primal problem of LPR is as follows;min�;� nXi=1 �i + C nXi=1 �i + C��s:t: pXj=1 xi;j�j � yi � �+ �i; yi � pXj=1 xi;j� � �+ �i; �i � 0; i = 1; : : : ; nwhere C and � are both regularization parameters. � ontrols the ratio of sup-port vetors inside the �-tube, and C parameter ontrols the trade-o� betweenover�tting and under�tting given �. KKT ondition tells us that either ui = 0 orPj xij�j�y��+�i = 0 holds. Geometrially speaking, more data points shouldlie on a at region of the �-insensitive loss funtion (Figure 3) in order to havemore sparsity. Sparsity and auray is trade-o� [14℄, and ontrolled through Cand �.4 ExperimentsIn this setion, we ompare several lassi�ation and regression methods in termsof indued sparsity and the resulting mining time. For the purpose of omparingdi�erent learning algorithms in a fair setting, we �x the mining algorithm togSpan [20℄ for graph mining 1. We show the basi statistis of the data used inTable 1.1 Graph mining toolbox, available from http://www.nowozin.net/sebastian/gboost/,is used for all the experiments.

IXTable 1. Datasets Summary. The number of positive data (POS) and negative data(NEG) are only provided for lassi�ation datasets. Average number of atoms (ATOM)and bonds (BOND) are shown for eah dataset. TIME indiates the time in seondsfor enumerating all the frequent patterns up to size 20.ALL POS NEG ATOM BOND TIMECPDB 684 341 343 14.1 14.6 7126EDKB 146 - - 19.5 21.1 2893Table 2. Inuene of the hoie of � parameter on L1SVM. Pat: the number of patternswith nonzero �, Itr: the number of iterations, �: the margin, Time: total time, SVs:mean ratio of support vetors over the iterations, A: the lassi�ation auray inthe training set. We an observe that � lowerbounds the number of support vetors.� 0.01 0.1 0.2 0.3 0.4Itr 67 73 47 26 47Pat 66 65 46 24 46Time 1410 618 315 156 116� 2.41e-11 0.130 0.0346 0.0809 0.143SVs 0.537 0.549 0.572 0.585 0.745A 0.993 0.973 0.938 0.892 0.839The CPDB dataset is available from the supplementary information of [6℄,and used for lassi�ation experiments. The EDKB data is provided by NationalCenter for Toxiologial Researh 2, and ontains 146 moleules with ativitylevels in real number. This dataset is used for regression experiments. We usedAMD Opteron 2.6GHz system with 32GB RAM for all the experiments. As areferene, frequent mining with minimum support 2 and maximum pattern size20 was run, and it took 2893 seonds and 7126 seonds on EDKB dataset andCPDB dataset, respetively. The number of frequent subgraphs up to the size20 were 4.4 million and 1 million for EDKB and CPDB dataset, respetively.For lassi�ation problem, we ompare L1SVM with AdaBoost in terms ofindued sparsity on example weights and resulting running time. Convergeneof L1SVM was heked using early stopping riterion P yixijui � + �; where� is set to 0:05. AdaBoost was run 100 iterations.Figure 4 shows the transition of example weights of AdaBoost(left) andL1SVM with � set to 0.1(enter) and 0.01(right). As expeted, AdaBoost doesnot generates sparsity on examples weights (left). In ontrast, examples weightsof L1SVM beome sparser as iteration proeeds (enter, right). Setting � = 0:1for L1SVM means that more than 10% of examples reeive nonzero weightsat eah iteration. Behavior of L1SVM for various regularization parameter � issummarized in Table 2.We an observe that � lowerbounds the number of support vetors.2 http://edkb.fda.gov/databasedoor.html

X Figure 5 (left) shows the evolution of auray as a funtion of total time forL1SVM and AdaBoost. It is observed that L1SVM ollet disriminative patternsand learns lassi�er muh faster in total time than AdaBoost. Figure 5 (right)shows the mining time at eah iteration. Due to the indued sparsity, miningtime of L1SVM is shorter than that of AdaBoost exept for last a few iterations.Mining time per iteration was 4.23 seonds and 16.4 seonds for AdaBoost andL1SVM, respetively. However, the last iterations of L1SVM did not ontributeto the inrease in auray, so one an stop it earlier by using validation set.Then the resulting mining time per iteration is shorter than that of AdaBoostas we an see in Figure 5 (right).
10 20 30 40 50 60 70 80 90 100

50

100

150

200

250

300

350

400

450

500

10 20 30 40 50 60 70

50

100

150

200

250

300

350

400

450

500

10 20 30 40 50 60

50

100

150

200

250

300

350

400

450

500Fig. 4. Transition of example weights of AdaBoost (left), that of L1SVM (� = 0:1)(enter) and that of L1SVM(� = 0:01) (right). The vertial axis shows example ID,and the horizontal axis shows iterations. Nonzero weights are represented in blak,and zero weights are represented in white. Notie that weights of L1SVM beomeinreasingly sparser as iteration proeeds.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time (sec)

ac
cu

ra
cy

Adaboost
L1SVM

0 10 20 30 40 50 60 70 80 90 100
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

iteration

m
in

in
g

tim
e

(s
ec

)
in

 lo
gs

ca
le AdaBoost

L1SVM

Fig. 5. (left) Evolution of Q2 for AdaBoost and L1SVM as a funtion of total timein seonds (total time = optimization time + mining time). (right) Mining time ofAdaBoost and L1SVM at eah iteration.

XIFigure 6 shows transition of perentage of support vetors and mining timefor L1SVM and AdaBoost in details. As AdaBoost does not have sparsity onexample weights, perentage of support vetors for AdaBoost is always 1.00.In ontrast, perentage of support vetors for L1SVM keeps dereasing (right),whih makes signi�ant di�erene in mining time. In Figure 7, we an observethat mining is always more ostly than optimization for AdaBoost (left). On theother hand, optimization is always more ostly than mining for L1SVM exeptfor last a few iterations. Notie that mining time for L1SVM is a magnitudeshorter than that for AdaBoost, aounting for the e�et of indued sparsity.
0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

iteration

%
 s

up
po

rt
 v

ec
to

rs

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

m
in

in
g

tim
e

(s
ec

)

%SVs(left axis)
Time(right axis)

AdaBoost

0 10 20 30 40 50 60 70
0

0.5

1

0 10 20 30 40 50 60 70
0

0.5

1

%
 s

up
po

rt
 v

ec
to

rs

iteration
0 10 20 30 40 50 60 70

0

100

200

m
in

in
g

tim
e

(s
ec

)

%SVs(left axis)
Time(right axis)

L1SVM

Fig. 6. Transition of perentage of SVs and mining time for AdaBoost (left) and L1SVM(right).

0 10 20 30 40 50 60 70 80 90 100
-10

-8

-6

-4

-2

0

2

iteration

tim
e

(s
ec

)
in

 lo
gs

ca
le

optimization time
mining time

AdaBoost

0 10 20 30 40 50 60 70
-6

-4

-2

0

2

4

6

iteration

tim
e

(s
ec

)
in

 lo
gs

ca
le

optimization time
mining time

L1SVM

Fig. 7. Transition of optimization time and mining time for AdaBoost (left) L1SVM(right).For regression we ompare LASSO with LPR. Convergene of LASSO andLPR was heked using early stopping riterionPni=1 xijui � 1+ �; where � wasset to 0.05. Example weights for pattern mining at eah iteration is shown in

XII
2 4 6 8 10 12 14

10

20

30

40

50

60

70

80

90

100

110

0.5 1 1.5 2 2.5 3 3.5

10

20

30

40

50

60

70

80

90

100

110

10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

110Fig. 8. Transition of example weights of LASSO (left), that of LPR (C = 1000; � = 0:1)(enter) and that of LPR(C = 1000; � = 0:01) (right). The vertial axis shows exampleID, and the horizontal axis shows iterations. Nonzero weights are represented in blak,and zero weights are represented in white. Example weights of LASSO are not sparse,in ontrast to LPR.Figure 8. As expeted, example weights of LASSO is not sparse, in ontrast tothat of LPR. This makes di�erene in the size of searh spae and eÆieny inpattern mining.Table 3 shows the behavior of LPR when hanging �. We an observe that �lowerbounds the number of support vetors. As we set � larger, more examples(data points) beome support vetors, and pattern mining beomes faster.Table 3. Inuene of the hoie of � parameter on LPR. Pat: the number of patternswith nonzero �, Itr: the number of iterations, �: the margin, Time: total time, �: tubesize automati determined by �, SVs: mean ratio of support vetors over the iterations,Q2: the regression Q2 in the training set. The tube size � is reovered after solving theoptimization problem [13℄.� 0.01 0.1 0.2 0.3 0.4Itr 118 3 2 2 2Pat 24 1 1 1 1Time 2120 34.3 14.6 15.9 15.4� 7.23e-12 0.386 0.349 0.261 0.219SVs 0.382 0.402 0.598 0.645 0.701Q2 1.00 0.535 0.345 0.359 0.358Figure 9 (left) shows the evolution of regression auray Q2 as a funtionof total time in seonds for LASSO and LPR. It learly demonstrates fasterlearning of LPR ompared with LASSO. Q2 of LPR is almost 1.0 around 700seonds, but that of LASSO was still around 0.8, and was 0.85 after another1800 seonds. Figure 9 (right) shows the mining time for LASSO and LPR ateah iteration. This �gure gives us an interesting observation; mining part ofLASSO is slow, while that of LPR is fast and alled many times. On average,mining time per iteration was 15.1 seonds for LPR, whih was muh faster than

XIIILASSO that took 182 seonds on average. One interpretation of this observationis that LPR suessfully split the original problem into many small parts, whileLASSO tried to solve the hard original problem diretly, whih turned out to bemore time onsuming in this ase.
0 500 1000 1500 2000 2500 3000

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time (sec)

Q
2

LASSO
LPR

0 20 40 60 80 100 120
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

iteration

m
in

in
g

tim
e

(s
ec

)
in

 lo
gs

ca
le

LASSO
LPRFig. 9. (left) Evolution of Q2 for LASSO and LPR as a funtion of total time in se-onds (total time = optimization time + mining time). (right) Mining time of LASSOand LPR at eah iteration.Figure 10 and Figure 11 give us more detailed information. Figure 10 showsperentage of support vetors for LASSO and LPR in details. As LASSO doesnot have sparsity on example weights, perentage of support vetors for LASSOis always 1.00 after the �rst iteration. In ontrast, perentage of support vetorsfor LPR is less than 1.00 until last a few iterations, whih makes signi�antdi�erene in mining time. In Figure 11, we an observe that time used for miningis almost always shorter than time used for optimization in LPR, but vie versein LASSO.

0 2 4 6 8 10 12 14
0.98

0.985

0.99

0.995

1

1.005

%
 s

up
po

rt
 v

ec
to

rs

iteration
0 2 4 6 8 10 12 14

0

200

400

600

800

1000

m
in

in
g

tim
e

(s
ec

)

%SVs(left axis)
Time(right axis)

LASSO

0 20 40 60 80 100 120
0

0.5

1

%
 s

up
po

rt
 v

ec
to

rs

iteration
0 20 40 60 80 100 120

0

500

1000

m
in

in
g

tim
e

(s
ec

)

%SVs(left axis)
Time(right axis)

LPR

Fig. 10. Transition of % of SVs and mining time for LASSO (left) and LPR (right).

XIV
0 2 4 6 8 10 12 14

0

1

2

3

4

5

6

7

iteration

tim
e

(s
ec

)
in

 lo
gs

ca
le

optimization time
mining time

LASSO

0 20 40 60 80 100 120
-8

-6

-4

-2

0

2

4

6

8

iteration

tim
e

(s
ec

)
in

 lo
gs

ca
le

optimization time
mining time

LPR

Fig. 11. Transition of optimization time and mining time for LASSO (left) LPR (right).5 ConlusionIn this paper we proposed to use loss funtions that indue sparsity on exam-ple weights for speeding-up disriminative pattern mining. We ompared popularloss funtions in lassi�ation and regression in terms of indued sparsity and re-sulting mining time. Computational experiments on real-world datasets showedthat either exploiting sparsity or not makes large di�erene in pattern mining.It is worth noting that other iterative mining method for lassi�ation and re-gression an also bene�t the laim of this paper and enjoy sparsity by arefullyhoosing loss funtions. Resulting eÆieny will be appreiated espeially whenmining problem is hard and time onsuming suh as the ase of frequent graphmining. From an optimization point of view, one does not have to limit a lossfuntion to onvex one, but an employ, e.g., ramp loss funtion [3℄, whih is notonvex but indue improved sparsity, for solving large problems.Referenes1. R. Agrawal and R. Srikant. Fast algorithms for mining assoiation rules. In Pro-eedings of the 20th International Conferene on Very Large Databases, pages487{499, 1994.2. B. Bringmann, A. Zimmermann, L. D. Raedt, and S. Nijssen. Don't be afraidof simpler patterns. In 10th European Conferene on Priniples and Pratie ofKnowledge Disovery in Databases (PKDD), pages 55{66. Sprinter, 2006.3. R. Collobart, J. Weston, and L. Bottou. Trading onvexity for salability. InProeedings of the 23rd International Conferene on Mahine Learning, pages 201{208, 2006.4. A. Demiriz, K.P. Bennet, and J. Shawe-Taylor. Linear programming boosting viaolumn generation. Mahine Learning, 46(1-3):225{254, 2002.5. Y. Freund and R.E. Shapire. A deision-theoreti generalization of on-line learn-ing and an appliation to boosting. Journal of Computer and System Sienes,55(1):119{139, 1996.

XV6. C. Helma, T. Cramer, S. Kramer, and L.D. Raedt. Data mining and mahinelearning tehniques for the identi�ation of mutageniity induing substruturesand struture ativity relationships of nonongeneri ompounds. J. Chem. Inf.Comput. Si., 44:1402{1411, 2004.7. H. Kim, S. Kim, T. Weninger, J. Han, and T. Abdelzaher. Ndpmine: EÆientlymining disriminative numerial features for pattern-based lassi�ation. In Euro-pean Conferene on Priniples and Pratie of Knowledge Disovery in Databases(PKDD), pages 35{50. Sprinter, 2010.8. T. Kudo, E. Maeda, and Y. Matsumoto. An appliation of boosting to graphlassi�ation. In Advanes in Neural Information Proessing Systems 17, pages729{736. MIT Press, 2005.9. S. Nowozin, G. Bakir, and K. Tsuda. Disriminative subsequene mining for a-tion lassi�ation. In Proeedings of the 11th IEEE International Conferene onComputer Vision (ICCV 2007), pages 1919{1923. IEEE Computer Soiety, 2007.10. J. Pei, J. Han, B. Mortazavi-asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, andM. Hsu. Mining sequential patterns by pattern-growth: The pre�xspan approah.IEEE Transations on Knowledge and Data Engineering, 16(11):1424{1440, 2004.11. G. R�atsh, S. Mika, B. Sh�olkopf, and K.-R. M�uller. Construting boosting algo-rithms from SVMs: an appliation to one-lass lassi�ation. IEEE Trans. Patt.Anal. Mah. Intell., 24(9):1184{1199, 2002.12. H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, and K. Tsuda. gBoost: A math-ematial programming approah to graph lassi�ation and regression. MahineLearning, 75(1):69{89, 2009.13. B. Sh�olkopf and A. J. Smola. Learning with Kernels: Support Vetor Mahines,Regularization, Optimization, and Beyond. MIT Press, 2002.14. I. Steinwart. Sparseness of support vetor mahines. Journal of Mahine LearningResearh, 4:1071{1105, 2003.15. R. Tibshrani. Regression shrinkage and seletion via the LASSO. J. Royal. Statist.So B., 58(1):267{288, 1996.16. K. Tsuda and K. Kurihara. Graph mining with variational dirihlet proess mixturemodels. In SIAM Conferene on Data Mining (SDM), 2008.17. T. Uno, M. Kiyomi, and H. Arimura. LCM ver.3: ollaboration of array, bitmapand pre�x tree for frequent itemset mining. In OSDM '05: Proeedings of the 1stinternational workshop on open soure data mining, pages 77{86, 2005.18. N. Wale and G. Karypis. Comparison of desriptor spaes for hemial ompoundretrieval and lassi�ation. In Proeedings of the 2006 IEEE International Confer-ene on Data Mining, pages 678{689, 2006.19. Y. Xiang, J. Ruoming, F. David, and F. F. Dragan. Suint summarizationof transational databases: an overlapped hyperretangle sheme. In KDD '08:Proeeding of the 14th ACM SIGKDD international onferene on Knowledgedisovery and data mining, pages 758{766, New York, NY, USA, 2008. ACM.20. X. Yan and J. Han. gSpan: graph-based substruture pattern mining. In Proeed-ings of the 2002 IEEE International Conferene on Data Mining, pages 721{724.IEEE Computer Soiety, 2002.21. M. J. Zaki. EÆiently mining frequent trees in a forest: algorithms and applia-tions. In IEEE Transations on Knowledge and Data Engineering, pages 1021{1035, 2005.

