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Abstract:
to a piece of common sense knowledge exhibits unexpectedness and is sometimes extremely useful in spite
of its obscurity. Most of the previous discovery approaches for such exceptions employ either background
knowledge or domain-specific criteria for evaluating the possible usefuluess, i.e. the interestingness of

This paper presents an algorithm for discovering exceptions from databases. An exception

the knowledge extracted from a database. It has been pointed out, however, that these approaches
are prone to overlook useful knowledge. In order to circumvent these difficulties, we have proposed
MEPRO based on an information-theoretic approach, and succeeded in discovering interesting exceptions.
However, some of the exceptions discovered by MEPRQO showed little unexpectedness due to the lack of
the attention to this characteristic in the system.

In this paper, we improve MEPRO for discovering unexpected exceptions, and propose it as MEPROUX.
A general view of discovery as search is also given in order to compare the two systems in terms of a
single framework. In this view, MEPRO and MEPROUX deal with the same discovery problem of
finding a user-specified number of rule pairs each of which consists of an exception associated with a
piece of common sense knowledge. The search strategies of the two systems are also identical in that
they are depth-first search with a branch-and-bound method. The main difference of the systems lies
in the evaluation criteria employed. Although the two criteria are defined by the information content of
both knowledge in a rule pair, several stochastic constraints are introduced in MEPROUX for removing
exceptions which can be easily predicted from the relationships inherent in the domain. The effectiveness
and the efficiency of MEPROUX have been validated using several benchmark data sets in the machine
learning community.
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1 Introduction

Recently, databases have grown remarkably both in
size and in number. Consequently, increasing atten-
tion has been paid to the automatic extraction of
knowledge from them, i.e. Knowledge Discovery in
Databases (KDD) [3, 5]. One of the important goals
of KDD is the discovery of common sense knowl-
edge, which is well motivated by various useful ap-
plications such as the automatic development of a
knowledge-base from a database. Various approaches
[1, 8, 11, 13] have been proposed for discovering com-
mon sense knowledge. Another important goals of
KDD is the discovery of unknown and useful excep-
tions [3]. Although an exception is often overlooked, it
represents a different fact from common sense knowl-
edge and can be extremely useful. Among the ap-
proaches for discovering such knowledge, well-known
systems include EXPLORA [4], KEFIR [9] and ME-
PRO [12].

Since a huge amount of knowledge can be embedded
in a database, the discrimination of possibly useful or
interesting knowledge is one of the most important
topics in the KDD community. Especially in the case

of discovering exceptions hidden in databases, the
most crucial problem is to define appropriate crite-
ria for evaluating the interestingness of the extracted
knowledge [9]. In EXPLORA, a priori given back-
ground knowledge is employed to define the criteria,
while KEFIR’s criteria is essentially domain-specific.
Appropriate use of background knowledge in the cri-
teria or appropriate use of domain-specific criteria can
enhance both the effectiveness and the efficiency of a
KDD system. However, the use of such background
knowledge can also hinder the discovery of interest-
ing knowledge [3]. Furthermore, it is difficult to find
appropriate criteria in some domains.

MEPRO, which employs neither background
knowledge nor domain-specific criteria, has been pro-
posed to circumvent these difficulties. While the pre-
vious systems can be regarded as exploiting user-
supplied common sense knowledge in discovering ex-
ceptions, MEPRO extracts exceptions associated with
their pieces of common sense knowledge. The extrac-
tion is based on a novel criterion for interestingness
defined by the information content of both knowledge.
Experimental results are promising, confirming that



MEPRO is an effective method for discovering inter-
esting exceptions. However, some of the knowledge
discovered by MEPRO showed little unexpectedness
due to the lack of the attention to this characteristic
in the system. In other words, the exceptions discov-
ered by MEPRO are interesting, but some of them
are predictable from the relationships inherent in the
domain. In this paper, we modify MEPRO so that
it discovers unexpected exceptions, and apply it to
benchmark data sets in the machine learning commu-
nity. The essentials of the modifications are the intro-
duction of the stochastic constraints on the events pre-
dicted by the discovered knowledge. A general view
of discovery as search is also given for comparing ME-
PRO with the modified system MEPROUX in terms
of a single framework. The experiments showed that
MEPROUX is a promising method for the effective
and efficient discovery of unexpected and useful ex-
ceptions.

2 Discovery as Search

In order to compare MEPROUX with MEPRO in
terms of a single framework, discovery is cast as a
search problem in this paper. The astute readers may
refer to the work done by Mitchell [6], in which gener-
alization is viewed as search problem for characteriz-
ing various approaches in terms of the search strate-
gies. Our view to discovery problem is almost identi-
cal, although the formalization of discovery method is
slightly different due to the ambiguity of usefulness in
discovery compared with the preciseness of accuracy
in classification.

A discovery program accepts, from a data set, in-
put instances represented in some language, which we
call the instance language after Mitchell. Discovered
knowledge corresponds to the possibly useful informa-
tion extracted from the input instances. The knowl-
edge is represented in a second language, which we
shall call the knowledge language. Given the instance
language and the knowledge language, the discovery
problem is to output K pieces of knowledge by ob-
serving a set of instances in a data set, where K is a
user-specified number.

This problem is essentially a search problem since
the discovery task corresponds to examining the
search space of possible solutions, which is defined by
the knowledge language, to determine useful pieces of
knowledge. Needless to say, the instances represented
in the instance language plays a crucial role in the
examination.

3 Rule Pair

The instance language employed in MERPO and ME-
PROUX is in an ordinary propositional representa-
tion. Let an example e; be a description about an ob-

ject stored in a data set in the form of a record, then a
data set contains n examples e1,es,- -, €,. An exam-
ple e; is represented by a tuple < a;1,ai2, -+, @iy >
where a;1, 59, -, a;, are values for m discrete at-
tributes. The requirement for discrete valued at-
tributes is dictated by the very nature of the rule-
based representation. Hence, continuous attributes
are supposed to be converted to nominal attributes
using an existing method such as [2].

In the knowledge language, we view a piece of
knowledge r; to be discovered from a data set as repre-
sented by a rule pair which consists of an exception
and a piece of common sense knowledge associated
with it. Here, each piece of knowledge is represented
by a stochastic if-then rule which states that the con-
clusion holds true with some probability if the premise
holds true. This representation has been chosen since
it is widely used in the A. I. community in spite of its
simplicity. Hence, a piece of common sense knowledge
is represented by Y, — =, where Y, = y1 Aya A---Ay,.
Here, z and y; are atoms, each of which is an event
representing, in propositional form, a single value as-
signment to an attribute. On the other hand, an
exception is represented by Y, A Z, — z/, where
Z, = 21Nz AN+ Nz, and ' and z; are atoms.
Atoms z and 7’ have the same attribute but differ-
ent values. To sum up, a node in the search space
represents a rule pair (g, ), which is defined in the
following way.

Y,
Y, A Z,

£

B (1)

r(p,v) =

Since a stochastic if-then rule represents correlation

or causality between its premise and conclusion, every

rule pair is assumed to satisfy the following inequali-
ties.

p(z|Y,) > p(z), p(e'|Y, A Z,) > p(a') (2)

4 GACE criterion

If discovery is viewed as a search problem, then dis-
covery methods can be characterized in terms of the
search methods that they employ. In our view, a
search method consists of a criterion for evaluating
the goodness of a node in the search space, and a
search strategy for determining the traversing order
of the nodes. This section gives an explanation of
the evaluation criterion GACE employed in MEPRO
and MEPROUX. We also describe the additional con-
straints introduced in MEPROUX for discovering un-
expected exceptions.

Let T be the complement of x, and p(z,Y),) be the
joint probability of z and Y, then from the point
of view of information theory, the rule ¥, — z indi-
cates that each of the np(z,Y),) examples has a code
length of —log, p(z|Y,), which is smaller than the



original length, —log, p(z), and each of the np(Z,Y),)
examples, a code length of —log, p(Z]Y,,) instead of
—log, p(Z). The use of the reduced code length,
or ;m compressed entropy, allows us to measure
the information content of an if-then rule quantita-
tively. The entropy per example compressed by the
rule, ACE(z,Y,,), which is called the Average Com-
pressed Entropy (ACE), is given as follows.

Y,) = [{-—np(z,Yy)log, p(z)
—np(z,Y,)log, p(T)}
—{-np(z,Y,)log, p(z|Y,)
—np(T, Y,) log, p(z[Y,.) }]/n

et g, 2T

“ p(z)

b?\. M\tv

p(7)

ACE(z,

Y,)log,

+p(%, Yy) log, (3)

A rule of large information content is useful in the
sense that it gives a compact representation for data
stored in a data set. Since ACE is a measure for the
information content of a rule, it can be considered
as a function for the usefulness of the rule. There-
fore, the interestingness of a rule extracted from a
data set is evaluated by its ACE. Since ACE increases
monotonously as p(z) decreases, as p(z|Y),) increases,
or as p(x,Y),) increases, it can be also viewed as a uni-
fied criterion for evaluating the unexpectedness, sta-
bility, and generality of a rule. Actually, Smyth [10]
showed various desirable properties of ACE as a cri-
terion for evaluating the interestingness of an if-then
rule extracted from a data set.

However, an exception Y, A Z, — 2’, whose ACE
is high, may not be “interesting” if the ACE of the
associated piece of common sense knowledge Y, —
z is extremely low. That is, the interestingness
of an exception depends not only on its ACE but
also on the ACE of the associated piece of common
sense knowledge. It is reasonable therefore to rep-
resent the interestingness of an exception in terimns
of both the above ACEs. Note that interesting-
ness should increase as the ACEs increase, and de-
crease when they decrease. Among the functions
which satisfy these requirements, the arithmetic mean
{ACE(x,Y,) + ACE(2',Y, A Z,)}/2 and the geomet-
ric mean \/ACE(#,Y,) - ACE(2/,Y, A Z,) are consid-
ered as the simplest formulations.

Let us analyze the appropriateness of these func-
tions as evaluation criteria for the interestingness of
an exception. Consider the case in which the max-
imums of both ACEs for constant x and 2z’ occur,
since we are interested in the rule pairs whose ACEs
are close to their respective maximum values. From
equation (1) and (2), the following equations (4)~(6)
are obtained.

a+b

+ b)log
(a+)log, a+b+c+d+e+f

ACE(x.Y,) =

+(c+d+e+f)

p(z)
ctd+e+f
-log,
a+b+ct+d+e+f
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From Lemma 1 in the appendix, both ACE(z,Y),) and
ACE(#',Y, A Z,) are maximized when b = p(z) and
a=d=e=f=0. Let U and V be the maximum
value of ACE(z,Y,) and ACE(z'.Y, A Z,), respec-
tively. From equation (4) and (5), we obtain

1 tel c 1
S SO SR O
p(z) + ¢ 82\ p(z) + ¢ p(@)
1
p(z')

where from equation (6) and (7),

U = p(z)log,

?

Vo= (8)

¢ log,

0<e<px'), < p@). (9)

A simple calculation shows that the maximum of
the arithmetic mean (U + V)/2 for constant z and =’
occurs when either ACE(z,Y,) = 0 or ACE(z", Y, A
Z,) = 0. The arithmetic mean function, therefore, is
inappropriate as a criterion for interestingness since
its maximum value is dominated by one of the ACEs.
Actually, using this function to determine interesting-
ness in some data sets will yield results which contain
useless and uninteresting knowledge.

On the other hand, the geometric mean vU -V
can be proved to possess no such shortcomings,
and thus the geometric mean of the ACEs, Geo-
metric mean of the Average Compressed En-
tropies (GACE), can be considered as one of
the simplest functions appropriate for evaluating
the interestingness of an exception. Therefore, the



interestingness function is defined by the GACE,
GACE(z,Y,, 2, Z,).

GACE(z,Y,, ', Z,)
= JACE(2.Y,) - ACE(+.Y, A Z,) (10)

As we will describe in section 6, although MEPRO,
which employed GACE criterion, succeeded in discov-
ering interesting exceptions, some of them showed lit-
tle unexpectedness. Careful analysis of the results led
to the introduction of the following three constraints
in the evaluation criterion of MEPROUX. Ouly rule
pairs which satisfy all of these constraints are evalu-
ated in MEPROUX.

First, we found that the rule Z, — ', which
we call the reference rule, plays an important role
in determining the unexpecteduess of the exception
Y,,Z, — «'. If the conditional probability p(z'|Z,)
is too high, it is easily predicted that the addition of
the condition Z, to the premise of a piece of common
sense knowledge Y,, — x changes the conclusion from
x to z'. Various coustraints ou p(x'|Z,) have been
investigated, and the following constraint is currently
employed in MEPROUX.

1 —p(«)

p('|Zy) < ple') + —

(11)

Second, some of the exceptions had smaller condi-
tional probability p(«’|Y,,Z,) compared to the con-
ditional probability p(z'|Z,) of the reference rule.
These exceptions can be considered to exhibit mean-
ingless combination of Y, and Z, in predicting x’.
The following constraint has been introduced in order
to circumvent this problem.

(@'Y, Z) > p('|Z,) (12)

Third, some of the rule Y, — z could not be ad-
mitted as a piece of common sense knowledge since a
more natural rule Y, — 2" existed where p(z|Y,) <
p(«"Y,), and atoms « and z” have the same attribute
but different values. The objective of the following
constraint is to remove such knowledge.

Va'p(z[Y,) = p(a"|Yy) (13)

5 Search Strategy

The search strategies employed in MEPRO and ME-
PROUX are identical: both of them represents a
depth-first search with maximum depth D to traverse
a search tree in which a node represents a rule pair
r(p,v) of equation (1). Let 4 = 0 and v = 0 rep-
resent the state in which the premises of a rule pair
r(p,v) contain no y; or no z; respectively, then we
define that ¢ = v = 0 holds in a node of depth 1 in
the search tree, and as the depth increases by 1, an
atom is added to the premise of a rule in a rule pair.

A node of depth 2 is assumed to satisfy p = 1 and
v = 0; a node of depth 3, x = v = 1; and a node of
depth I (> 4), p+v =1-1 (pt,v > 1). Therefore, a
descendant node represents a rule pair r(u’, v') where
i > pand v > v,

According to Theorem 1 in the appendix, an upper-
bound exists for the GACE of this rule pair. In other
words, if the upper-bound for the current node is lower
than GACEg (the Kth highest GACE of the discov-
ered rule pairs), no rule pair exists whose GACE is
higher than GACFEg in its descendant nodes. This
law tells us that there is no need to expand such de-
scendant nodes and that these nodes can be safely cut
off. To alleviate the inevitable inefficiency of depth-
first search, a Branch-and-Bound Method (BBM)
based on GACE[ is employed in our systems.

6 Application to Data Sets

MEPRO and MEPROUX have been tested with
data sets from several domains, including the voting
records data set and the mushroom data set [7].

The voting records data set cousists of voting
records in a 1984 session of Congress, each piece of
data corresponding to a particular politician. The
class variable is party affiliation (republican or demo-
crat), and the other 16 attributes are yes/no votes
on particular motions such as Contra-aid and bud-
get cuts. Table 1 and 2 shows the results of asking
MEPROUX and MEPRO for the 10 best rule pairs
respectively, where the maximum search depth D is
restricted to 8. A comma and C in the table represent
conjunction and the premise of the associated piece of
common sense knowledge respectively, while z and Y
are the conclusion and the premise, respectively.

From table 1, we note that unexpected interesting
exceptions emerge, confirming that the system is ad-
equate for the task. For instance, according to the
fourth rule pair, 70 % of the 212 congressmen who
voted “yes” to “salvador” voted “yes” to “education”.
However, 11 of these who voted “no” to “physician”,
“yes” to “religious” and “yes” to “nicaraguan” all
voted “no” to “education”. This exception can not
be easily guessed from the reference rule, since the
conditional probability of the rule is only 76 % while
the probability of voting “no” to “education” is 54
%. Note that such a weak regularity is quite common
in a data set. The premise of this exception, which
can be viewed as giving a partial definition of these
exceptional congressmen, is highly interesting.

2

On the other hand, exceptions in table 2 are inter-
esting but some of them can be easily predicted from
the reference rule. For example, the first rule pair
shows that all the 22 republicans who voted “yes” to
“adoption” voted “yes” to “physician”, which is an
exception to the piece of common sense knowledge:
a congressman votes “no” to “physician” if he votes



Table 1: The 10 best rule pairs with their associated reference rules discovered by MEPROUX from the voting
data set.

cominon sense knowledge

Rank exception p(z]Y) p(z) P(Y) ACE GACE
reference rule
handicapped=no, crime=yes, — salvador=yes 0.84 0.49 0.40 0.154
1 C, party=demo, physician=no, religious=yes, superfund=no — salvador=no 1.00 0.48 0.03 0.029 0.0672
party=demo, physician=no, religious=yes, superfund=no — salvador=no 0.73 0.48 0.13
salvador=yes, exports=no — education=yes 0.77 0.39 0.39 0.163
C, party=demo, wmda..zmwvoaﬂwmmq m&o@ﬁod”%om, physician=no, 1.00 0.54 0.02 0.021 0.0582
2 religious=yes — education=no
party=demo, wmd&n..mvwoaﬂwmm, m&oﬁiwﬁﬂwom, physician=no, 0.71 0.54 0.09
religious=yes — education=no
nicaraguan=yes — physician=no 0.87 0.57 0.56 0.175
3 C, salvador=yes, religious=yes, satellite=yes — physician=yes 0.81 0.41 0.04 0.018 0.0567
salvador=yes, religious=yes, satellite=yes — physician=yes 0.69 0.41 0.08
salvador=yes — education=yes 0.70 0.39 0.49 0.138
4 C, physician=no, religious=yes, nicaraguan=yes — education=no 1.00 0.54 0.03 0.023 0.0561
physician=no, religious=yes, nicaraguan=yes — education=no 0.76 0.54 0.16
handicapped=no, missile=no — education=yes 0.78 0.39 0.35 0.152
5 C, adoption=yes, religious=yes, nicaraguan=yes — education=no 1.00 0.54 0.02 0.021 0.0560
adoption=yes, religious=yes, nicaraguan=yes — education=no 0.71 0.54 0.18
satellite=yes — party=demo 0.84 0.61 0.55 0.094
6 C, salvador=yes, nicaraguan=yes, crime=yes — party=rep 0.89 0.39 0.04 0.033 0.0557
salvador=yes, nicaraguan=yes, crime=yes — party=rep 0.68 0.39 0.06
handicapped=no, crime=yes — salvador=yes 0.84 0.49 0.40 0.154
7 C, party=demo, religious=yes, superfund=no — salvador=no 0.92 0.48 0.03 0.020 0.0552
party=demo, religious=yes, superfund=no — salvador=no 0.71 0.48 0.13
handicapped=no, crime=yes — salvador=yes 0.84 0.49 0.40 0.154
8 C, physician=no, religious=yes, superfund=no — salvador=no 0.92 0.48 0.03 0.020 0.0552
physician=no, religious=yes, superfund=no — salvador=no 0.71 0.48 0.13
satellite=yes — physician=no 0.82 0.57 0.55 0.118
9 C, salvador=yes, nicaraguan=yes, south-africa=yes — physician=yes 0.88 0.41 0.04 0.025 0.0546
salvador=yes, nicaraguan=yes, south-africa=yes — physician=yes 0.70 0.41 0.05
satellite=no, missile=no — party=rep 0.76 0.39 0.36 0.152
10 C, adoption=yes, salvador=yes, immigration=no — party=demo 1.00 0.61 0.03 0.019 0.0543
adoption=yes, salvador=yes, immigration=no — party=demo 0.80 0.61 0.06

Table 2: The 10 best rule pairs with their associated reference rules discovered by MEPRO from the voting
data set.

cominon sense knowledge

Rank exception p(z|Y) p(z) P(Y) ACE GACE
reference rule
adoption=yes — physician=no 0.87 0.57 0.58 0.175
1 C, party=rep — physician=yes 1.00 0.41 0.05 0.066 0.1070
party=rep — phlysician=yes 0.97 0.41 0.39
adoption=yes — party=demo 0.91 0.61 0.58 0.195
2 C, physician=yes, satellite=yes — party=rep 1.00 0.39 0.04 0.054 0.1024
physician=yes, satellite=yes — party=rep 0.95 0.39 0.09
satellite=yes — physician=no 0.82 0.57 0.55 0.118
3 C, party=rep — physician=yes 0.95 0.41 0.09 0.088 0.1018
party=rep — physician=yes 0.97 0.41 0.39
party=demo — salvador=no 0.75 0.48 0.61 0.135
4 C,nicaraguan=no,crime=yes — salvador=yes 0.97 0.49 0.09 0.075 0.1007
nicaraguan=no,crime=yes — salvador=yes 0.99 0.49 0.38
crime=yes — party=rep 0.64 0.39 0.57 0.105
5 C, physician=no — party=demo 0.97 0.61 0.17 0.095 0.1003
physician=no — party=demo 0.99 0.61 0.57
adoption=yes — party=demo 0.91 0.61 0.58 0.195
[ C, physician=yes, synfuels=no, south-africa=yes — party=rep 1.00 0.39 0.04 0.050 0.0993
physician=yes, synfuels=no, south-africa=yes — party=rep 0.99 0.39 0.18
salvador=yes — party=rep 0.74 0.39 0.49 0.182
7 C, physician=no — party=demo 0.98 0.61 0.10 0.054 0.0990
physician=no — party=demo 0.99 0.61 0.57
crime=yes — salvador=yes 0.78 0.49 0.57 0.151
8 C,physician=no, satellite=yes, nicaraguan=yes — salvador=mno 0.95 0.48 0.09 0.064 0.0985
physician=no, satellite=yes, nicaraguan=yes — salvador=no 0.65 0.48 0.43
nicaraguan=yes — party=demo 0.90 0.61 0.56 0.169
9 C, physician=yes, synfuels=no — party=rep 1.00 0.39 0.04 0.057 0.0980
physician=yes, synfuels=no — party=rep 0.98 0.39 0.32
satellite=yes — party=demo 0.84 0.61 0.55 0.094
10 C, physician=yes, salvador=yes — party=rep 1.00 0.39 0.07 0.100 0.0975

physician=yes, salvador=yes — party=rep 0.93 0.39 0.39




“yes” to “adoption”. This exception exhibits the rad-
ical change of the conclusion caused by the additional
condition “republicans”, and is considered as highly
interesting. However, it shows little unexpectedness
since 97 % of republicans voted “yes” to “physician”.
From table 1 and 2, we can easily validate the effec-
tiveness of the constraints introduced in section 4.

The mushroom data set includes 22 descriptions
and the edibility class of 8124 mushrooms, each at-
tribute having 2 to 12 values. While there were no
restrictions on the attributes of the atoms in the pre-
vious experiment, users may also impose some con-
straints on them. In this experiment, for example,
the edibility class is the only attribute allowed in the
conclusions. Table 3 and 4 show the 8 most interest-
ing rule pairs discovered by MEPROUX and MEPRO
respectively, where the maximum search depth D is
again set to 8.

The discovered rule pairs in table 3 also show inter-
esting unexpected exceptions. According to the third
rule pair, 74 % of the mushrooms whose “bruises” is
“” and “ring-number” is “o0” are edible but 100 % of
them are actually poisonous if the “ss-aring” is “f”.
This exception can not be easily predicted from the
reference rule since its conditional probability is only
74 %. Again, exceptions in table 4 are interesting but
some of them can be easily predicted from the refer-
ence rule. For example, the exception in the third rule
pair shows little unexpectedness since the conditional
probability of the reference rule is 100 %.

The maximum depth should be large enough so that
MEPRO and MEPROUX investigate rule pairs whose
premises have sufficient numbers of atoms. However,
in depth-first search, the number of rule pairs grows
expouentially as the depth increases. In this section,
we show experimental evidence which suggests that
BBM is quite effective in alleviating such inefficiency.
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Figure 1: Performance of BBM with varying depth
and number of target rule pairs K.

Figure 1 shows a plot of the ratio of the number of

nodes pruned by BBM to the total number of nodes
visited by depth-first search with depth D. The data
set chosen for this evaluation was the “voting” data
set described earlier. The systems were run with six
different values of D (3, 4, ---, 8) and three values
of K (10, 50, 100). Note that the ratio decreases
as K increases; actually it is 0 if K is equal to or
greater than the number of nodes within depth D.
The figure shows that BBM is more effective with a
larger depth, e.g. it reduces by more than 80 % of
the number of nodes searched when D = 8. This is
especially important since we must go deeper in the
tree to obtain useful exceptions.

7 Conclusion

In this paper, we have demonstrated the effectiveness
of our proposed stochastic constraints for unexpected
exceptions from the knowledge discovery viewpoint.
An interpretation of discovery as search was given
to compare the previous system MEPRO with the
newly proposed system MEPROUX, in which the con-
straints are employed. Both systems were explained
in detail, and two examples of discovering exceptions
from a data set were also given for evaluating the ef-
fectiveness and the efficiency of the proposed system.
The results were promising: MEPROUX produced
truly unexpected exceptions efficiently.

Since MEPROUX requires no domain information
except for a data set, it is effective in the exception
discovery from the data sets where it is difficult to
obtain background knowledge a priori. Moreover, it
would discover unknown and useful exceptions from
the data sets where such knowledge is left undiscov-
ered due to the unpredictable misuse of user-supplied
background knowledge. Ongoing work focuses on ex-
tensions and refinements of the basic MEPROUX sys-
tem for applying it to larger problems. The ultimate
goal of the study is the automatic discovery of some
extremely useful exceptions which are unknown to
mankind.
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Table 3: The 8 best rule pairs with their associated reference rules discovered by MERPOUX from the mushroom
data set, where the edibility class is the only attribute allowed in the conclusions.

comimmon sense knowledge

Rank exception p(z|Y) p(z) P(Y) ACE GACE
reference rule
bruises={, g-attachment=f, ring-number=o0 — class=p 0.77 0.48 0.52 0.132
1 C, ss-aring={f — class=e .00 0.52 0.05 0.048 0.0795

74 0.52 0.07

7 0.48 0.52 0.132

.00 0.52 0.05 0.048 0.0792
74 0.52 0.07

74 0.48 0.54 0.107

00 0.52 0.05 0.048 0.0713
74 0.52 0.07

72 0.48 0.56 0.096

00 0.52 0.05 0.048 0.0676
74 0.52 0.07

0.48 0.56 0.095

00 0.52 0.05 0.048 0.0674
74 0.52 0.07

79 0.48 0.28 0.077

00 0.52 0.06 0.056 0.0659
70 0.52 0.69

84 0.48 0.26 0.104

00 0.52 0.04 0.039 0.0638
75 0.52 0.06

ss-aring=f — class=e
bruises=f, veil-color=w, ring-number=o0 — class=p
2 C, ss-aring=f — class=e
ss-aring=f — class=e
bruises=f, ring-number=o0 — class=e
3 C, ss-aring=f — class=e
ss-aring=f — class=e
bruises=f, veil-color=w — class=p
4 C, ss-aring=f — class=e
ss-aring=f — class=e¢
bruises={, g-attachment={f — class=p
5 C, ss-aring=f — class=e
ss-aring={f — class=e
stalk-root=7, sp-color=w — class=p
6 C, g-size=b — class=e
g-size=b — class=e
bruises={f, veil-color=w, sp-color=w — class=p
7 C, g-spacing=w, stalk-shape=e¢ — class=e
g-spacing=w, stalk-shape=e — class=e

H OO S IO HODOIOHOICH OO IO OO
=
V)

bruises={, g-attachment=f, ring-number=0 — class=p 7 0.48 0.52 0.132
8 C, cap-color=w, stalk-root=e — class=e 00 0.52 0.03 0.030 0.0629
cap-color=w, stalk-root=e — class=e 0.67 0.52 0.05

Table 4: The 8 best rule pairs with their associated reference rules discovered by MERPO from the mushroom
data set, where the edibility class is the only attribute allowed in the conclusions.
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Appendix

Lemma 1 Let > a; /{3 a;i+ Y 02, bi} > p(x).
Then

G = Dimy @ 1 v

ni
a; log A -
WM A\ ai+ 3007 bip(x)

! M@ o8 (s Mwm )

(14)

increases monotonously for each aj, and decreases
monotonously for each b;.

Proof This lemma is easily proved by calculating the
partial derivatives.

Theorem 1 Let H(a) = [a/{(1 4+ a)p(z) }]**/{(1 +
a)p(x)}, o1 and as satisfy H(a;) > 1 >
H(az), and GACE = GACE(z,Y,.2'.Z,). If
H(p(«',Y,, Z,)/p(x,Y,)) <1 then,

; 1 1
GACE < p(z,Y,) Tm *omm A:Q:év

rontons (i) fows o |
(15)

else

E&L\E
Q&Qmm EH,M\_O A
: ,ag?éiﬁés

H I3
@v + UA& “M\\SN?V
1o p(=', Y Z)) 1
108 A@@LS +p(@, Y, Z,) Eii
\ o1 H
p(z", Yy, Z,) logy %L : (16)

Proof Since ACE is positive [10], if both the
ACEs, ACE(z,Y,s) and ACE(2',Y,s A Z,/), are max-
imized, then GACE is likewise maximized. Let g =
p(«'.Y,y,Z,), then from Lemma 1, this is the case
when

N

@A&“M\t\“ Ntv = UA&“M\E“ Ntv,

UTFM\ESva = UA.\F M\tu tvu

A&\ M\ A \v =q, _UA&\QM\:JNN\V =0 AH‘NV
peVa' Yy, Z,)=paVa Y, Z,) =0,
p(2. Y, Z,)=p&Va Y, Z,)=0,

since these constraints do not restrict the range of
g. The proof can be easily obtained by maximizing
GACE with respect to ¢ where 0 < ¢ < p(¢/,Y,, Z,)
and ¢ < p(«.Y,)p(Z)/p(x).



