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Abstract—We propose a hybrid context based topic model
for word sense disambiguation in document representation.
Document representation is an essential part of various document
based tasks, and word sense disambiguation is to capture the
distinctions of word senses in the representation. Traditional
methods mainly rely on knowledge libraries for data enrichment;
however, semantics division for a word may vary from different
domain-specific datasets. We aim to discover more particular
word semantic differences for each input dataset and handle the
disambiguation problem without data enrichment. The challenge
for this disambiguation is to (1) divide various senses for each
polysemous word while (2) preserve the differences between syn-
onyms. Most of the existing models are either based on separate
context clusters or integrating an auxiliary module to specify
word senses. They can hardly achieve both (1) and (2) since
different senses of a word are assumed to be independent and
their intrinsic relationships are ignored. To solve this problem,
we estimate a word sense by both the context in which it occurs
and the contexts of its other occurrences. Besides, we introduce
the “Bag-of-Senses” (BoS) assumption: a document is a multiset
of word senses, and the senses are generated instead of the
words. Our experiments on three standard datasets show that our
proposal outperforms other state-of-the-art methods in terms of
accuracy of word sense estimation, topic modeling, and document
classification.

Index Terms—document representation, topic model, word
sense disambiguation

I. INTRODUCTION

Document representation is the task of mapping the sparse
high-dimensional features of documents to low-dimensional
space while reflecting their latent semantics [1], [2]. Word
Sense Disambiguation (WSD) is the process of identifying
a sense of polysemic words [3]. As the basic unit of doc-
uments, words are often ambiguous [4]. Simply ignoring the
distinctions of word senses could fairly obscure the differences
between documents in the semantic space. Therefore, the
WSD problem has always been an essential topic in document
representation studies [5].

Traditional solutions typically introduce an external stan-
dard knowledge library (e.g., Wikipedia, WordNet [6]) as
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machine-readable sense inventories for data enrichment1 [8]–
[12]. However, in most lexicographic practice, word senses are
abstractions from clusters of corpus citations, i.e., the category
and the explanation for each sense strongly depend on the
semantic coverage2 of the related dataset. A more extensive
semantic coverage corresponds to a coarser granularity of
the word semantic division. Therefore, in these knowledge
libraries, word senses which are rare, emerging, or confined
to a specific domain are typically ignored [13]. For instance,
for the word “religion” in a politics-related dataset, we may be
more concerned about a finer-grained semantic division of dif-
ferent religious groups (e.g., “the Islam” and “the Christian”),
rather than just handling them abstractly as “a belief in one
or more gods”. Besides, the semantics understanding of words
in a dataset may also exhibit a unique perspective, which is
often domain-specific and implicit in the co-occurrence pattern
between each word and its contexts within a dataset [13], [14].
Therefore, handling the WSD problem without data enrich-
ment is a critical issue in the document representation task.
The challenge for this disambiguation problem is to divide
various senses of each polysemous word while preserving the
differences between different words, especially synonyms.

Several researchers model multiple word senses without
data enrichment by separate context clusters [15]–[17]. Specif-
ically, they group the contexts of all occurrences for each word
into discriminated sense clusters, use these clusters to re-label
the words based on the contexts of each occurrence, and then
learn word or document representations based on these re-
labeled words. These context clustering-based methods can
capture different usages of word senses in a dataset without
external knowledge libraries. However, relying solely on each
clustered contexts is likely to decrease the differences between
synonyms, since they often occur in highly similar contexts
when representing similar or identical senses, such as the sense
“belief ” for words “faith” and “religion”. Besides, the context
in which a word occurs is not necessarily sufficient to specify
its sense. For example, “kick” contributes more to clarifying
the sense of the word “ball” than “play” because “play” has

1Data enrichment is defined as merging third-party data from an external
authoritative source with an existing database of first-party customer data [7].

2Semantic coverage is the coverage of themes relative to a dataset.



a broader sense than “kick”.
Another kind of solution is to introduce an auxiliary module

which is linked through an intermediate variable t, e.g., the
topic assignment for each word [8], [18], [19]. Identical
words combined with different values of t correspond to
different senses. This approach can take advantage of the
complementary of different models and improve document
representation performance. However, there are two risks for
the applicability of the word sense division: (1) the differences
in senses of identical words with the same value of t could
be ignored, and (2) identical words with different t values
could be misinterpreted as representing different senses. For
example, the word “key” in the topic of “electronic”, might
has at least two senses of “buttons on a keyboard” and
“string of bits for scrambling and unscrambling”, and the
sense “buttons on a keyboard” may correspond to at least two
topics of “electronic” and “music”. Therefore, it is not always
appropriate to impose such a semantic division for each word.

Either of these two kinds of solutions seems unable to
construct a common word sense disambiguation standard in
document representation. The fundamental reason is that the
different senses of a word are mainly assumed to be inde-
pendent and their intrinsic relationships are ignored. These
relationships are an essential basis to clarify the usage dif-
ferences in other words. For example, the difference between
the senses of “belief ” for “religion” and “faith” lies in that
”faith” in something does not necessarily pre-suppose that the
belief could not be proven wrong, while “religion” is not [20].
Such internal differences of synonyms are challenging to be
captured only according to the sense related to their contexts
in which they occur, and should also depend on their other
senses, e.g., another sense “ceremonies and duties related to a
belief ” of “religion” may help clarify its difference to “faith”
[21].

In this paper, we propose a hybrid context based word sense
aware topic model (named HCT), where each sense of a word
is estimated by integrating their topic distributions of both
the context words in which it occurs and those of its other
occurrences. Besides, we introduce the “Bag-of-Senses” (BoS)
assumption that a document is a multiset of word senses, based
on which HCT generates a word sense instead of the words
themselves. The proposed model enjoys two substantial merits
over the state-of-the-art methods: (1) no data enrichment or
auxiliary module is needed, (2) it is an end-to-end model in
which the topic vectors for hybrid contexts as well as their
weights for each word are all considered as variables and
learned jointly.

II. RELATED WORKS

Document representation has long been studied in various
areas [22]. Topic modeling and word embedding are two
important paradigms for this task. The former takes a global
view of the word distributions across the corpus to assign a
topic to each word occurrence. The latter is based on a view of
the local word collocation patterns observed in a text corpus.
For the traditional versions of the two paradigms, such as LDA

[23] and Word2vec [24], despite their significant progress in
various tasks and applications, there is a common issue that
one word corresponds to one topic distribution or embedded
vector, while in many cases, the semantics of a word may vary
from different senses.

In recent years, lots of studies have been proposed for
word sense disambiguation in the document representation
task [8], [10]–[12], [25]. Conventionally, they mainly rely
on data enrichment, e.g., using knowledge libraries or pre-
training datasets, for word sense induction, such as the
WordNet [6] based Seeded-LDA [8] and SemLDA [10], the
Wikipedia based Token-SDM [26] and LTTM [27], as well
as the BooksCorpus [28] and Wikipedia based model ELMO
[29], GPT [30], and BERT [12]. All of them have achieved
significant progress in word disambiguation performance in
document representation, and especially for the recent neural
network based language models such as ELMO [29], GPT
[30] and BERT [12], have rapidly improved the state-of-the-
art on many NLP tasks. Despite their empirical success, the
requirements for scales of pre-training datasets and compu-
tational efficiency are widely recognized issues due to their
large number of parameters (94M for ELMO [29], 340M for
BERT [12], and 1542M for GPT [30])) [31]. More importantly,
for most of the data enrichment based methods, they assume
that word senses are within the scope of the auxiliary text data,
while senses in the auxiliary data may not constantly match the
ones in a specific dataset. In contrast, we aim to discover more
particular word semantic differences for a dataset related to a
specific domain, in which we cannot always obtain sufficient
scales of domain-specific data for the enrichment.

One solution to solve the WSD problem without data
enrichment is by contexts clustering [15]–[17]. DPMM [15]
and EHModel [16] both obtain multi-prototype word embed-
dings by conducting clustering on all context word features
for each word. Though useful, they generate multi-prototype
word vectors in isolation, ignoring complicated correlations
between word senses and their contexts [18]. MSSG [17]
improves them by providing flexibility for the number of
context clusters, allowing the cluster number varies according
to the different distances of contexts in which each word
occurs to their nearest sense cluster. Clustering contexts for
each word can effectively divide their senses; however, it is
challenging to clarify the differences between synonyms due to
their similar contexts. Moreover, because of the independence
between different clusters, the degree of relationship between
a sense and a specific context is ignored.

Another solution is to introduce an additional module to
support the word sense disambiguation in document repre-
sentation. SA-SLDA [8] integrated a Word Sense Induction
(WSI) model and are topic models, and the two modules are
linked by the topics corresponding to each word. CGTM [32]
and w2v-LDA [33] is a topic model using word embedding
as an additional component. Topic2Vec [34] and TWE [18]
introduce topic vectors in the embedding process, in which the
word vector is embedded by concatenating the corresponding
word and topic. STE [19] holds the same basic idea as TWE



that combines both the latent topics and word embeddings,
but the difference is to learn topical word embeddings in a
unified manner. Essentially, they all attempt to link each word
occurrence and a specific sense through topics. However, this
explicit and compulsory division for word semantics inevitably
overlooks the influence of other senses on further clarifying
the differences to other words, which leads to either splitting
of a sense corresponding to more than one topic or neglecting
of multiple senses of a word sharing one topic. Besides, many
studies have shown that the two paradigms of word embedding
and topic modeling are complementary in how they represent
the semantics of documents; thus, the improvement for either
of them can contribute to optimizing the performance of their
integrated model in document representation [19].

III. SENSE AWARE TOPIC MODELING

This section describes in detail the “Bag-of-Senses” (BoS)
model, how a word sense is estimated and generated in our
BoS based topic model using the hybrid context, and the
Gibbs-Sampling [35] based parameter estimation.

A. Bag-of-Senses

As a topic model, the basic task is, for a set of n documents
D = {D0, D1, ..., Dn}, to obtain the topic distribution θDi

for each document Di and word distribution φk for each
topic k. Following most traditional topic models [23], θDi

and φk are both assumed to be Dirichlet distributions. The
number K of topics for each document is assumed fixed
and known. Each word corresponds to a K-dimensional topic
vector. For the ”Bag-of-Words” (BoW)3 based models, all the
word occurrences are mapped to one topic vector, whereas the
vector cannot reflect the difference between various senses.
Therefore, we propose the “Bag-of-Senses” (BoS) hypothesis:
a document d in a dataset, is represented as a multiset of word
senses sw, d = {sw: nsw |w ∈ wd}, where nsw is the counts of
sw in d, wd refers to the multiset of words in d. Each word in
d corresponds to a word sense and each sense corresponds to a
topic vector. For example, suppose that a document Di consists
of three words “religion” where two of them refer to the sense
of “the Islam” (s1) and the other one refers to “the Christian”
(s2). In the BoW model, Di is represented as {religion : 3},
whereas in BoS, it is {religions1 : 2, religions2 : 1}.

B. Hybrid-Context based Sense Estimation

The primary problem is how to define the topic vector of the
sense for a word occurrence. Based on the compilation rules
of a dictionary that each group of similar usage corresponds to
a sense cluster [29], we can reasonably assume that the senses
of each word in a specific dataset hold the similar clustered
properties. Moreover, the usage differences of senses for each
word are reflected by their corresponding different contexts.
Therefore, we give the definitions of the Dataset-Specific Word
Sense and the Context Words as follows.

3The ”Bag-of-Words” (BoW) is the most widely used simplifying model
in document representation, which assumes a document is a multiset of words,
disregarding grammar and even word order but keeping multiplicity [36].

Definition 1. Dataset-Specific Word Sense In BoS, the
Dataset-Specific Word Sense for a word is defined as a cluster
of similar usage of all its senses in a specific dataset.

Definition 2. Context Words For a word w in a document,
given a window size L, the context words w′ of word w refers
to a set of words within the window.

To ensure both differences between various senses for each
polysemes as well as those between synonyms, based on
Definitions 1 and 2, a sense vector vw′,w for a word w in
a specific context w′ is estimated by a hybrid of all its sense
clusters, where w′ is the context words of w. Specifically, let
each sense cluster s′ of word w correspond to a specific vector
vs
′

w ; thus, vw′,w is obtained by a mixture as:

vw′,w =
∑
s′∈S

µs
′

w′,wv
s′

w , (1)

where S is a set of all sense clusters of word w and µs
′

w′,w is its
corresponding weight (

∑
s′∈S µ

s′

w′,w = 1). Now the problem
is how to define vs

′

w in a topic space. Explicitly estimating all
the sense clusters of each word is difficult, since the cluster
number for each word is quite different; thus, to estimate
the word sense vector directly by Eq. (1) is intractable. To
solve this problem, inspired by the ”Distributional Hypothesis”
[37] which states that words in similar contexts have similar
meanings, we can assume that sense clusters can be reflected
in different sets of contexts. Therefore, given a set of contexts
of each sense cluster, the vector vsw for cluster s can be
represented by the average of the vectors for the words in
the set of its contexts:

vsw =
∑
w′∈w′s

vgw′ , (2)

where w′s refers to the set of words occurring in the context
of all senses in cluster s and vgw′ is the global topic vector of
word w′.

Nevertheless, obtaining w′s is also difficult since we cannot
know all the possible contexts of each sense cluster in a dataset
beforehand. Therefore, we rewrite Eq. (1) as:

vw′,w = µsw′,wv
s
w +

∑
s′∈S−s

µs
′

w′,wv
s′

w ,

where S−s is the set of all sense clusters except for s. We see
that vw′,w can be represented as a combination of one sense
cluster vector and a weighted sum of other cluster vectors,
while the latter can be approximately regarded as a general
vector of w since it contains most of its senses. Hence, we
can always find a combination of weights to let vw′,w be
represented as a weighted sum of a local sense vector vlw
and a global topic vector vgw, where vlw only concerned about
the current context w′ (vlw =

∑
w′∈w′ v

g
w′ ). Hence, the sense

vw′,w in a specific context can be calculated as:

vw′,w = µw′,wv
l
w + (1− µw′,w)vgw, (3)



where µw′,w is the corresponding weight. Eq. (3) avoids
obtaining all the sense clusters of each word beforehand since
the calculation of vw is independent of sense clusters.

We name the topic vector of a word Global Sense Vector
(denoted by vg), the mean vector of its context words Local
Sense Vector (denoted by vl), the topic vector of word sense
Word Sense Vector (denoted by vw), and the weight of vl

Specific Sense Weight (denoted by µw′,w). Therefore, vw′,w
for a word w within context words w′ can be estimated by its
vgw and vlw′,w. Their definitions are as follows.

Definition 3. Global Sense Vector For a K dimensional
topic space, the Global Sense Vector vgw is the probability
distribution of w for the K topics.

Definition 4. Local Sense Vector For a word w in a context
of w′, the Local Sense Vector vlw′,w of w is a mean of vgs
of its context words:

vlw′,w =
∑
w′∈w′

vgw′ .

Definition 5. Word Sense Vector For a word w with context
words w′, its sense vw′,w is a weighted average of its vg and
vl:

vw′,w = µw′,wv
l
w′,w + (1− µw′,w)vgw,

where µw′,w is named Local Sense Weight.

C. Word Sense Generation

Based on the above definitions, for a BoS based topic model,
a document is generated by word senses, while a specific sense
consists of a word and its context words. Therefore, given
a topic to the ith word of document d, not only a word is
generated but also its context words.

According to Definition 4, using joint probabilities to esti-
mate the generating possibilities of context words is inappro-
priate because the Local Sense Vector of a word is defined
as the mean topic vector of the context words. Therefore, we
assume the set of context words w′ of word w to be a pseudo
word cw′ as an observed variable, and takes the average of
topic vectors for all the involved words as its own vector.
Following LDA [23], the topic-word distribution φk for w
and the topic-pseudo word distribution πk for cw′ follow two
Dirichlet distributions as:

φk ∼ Dir(β),πk ∼ Dir(γ).

Therefore, given a topic k, the word w and its corresponding
pseudo word cw′ follow two Categorical distributions:

w ∼ Cat(φk), cw′ ∼ Cat(πk).

According to the conjugate of Dirichlet distribution and Cat-
egorical (or Multinomial) distribution, their expectations are
calculated as follows:

Eβ(φk,w) =
nwk,−(d,i) + βw∑V

f=1(n
f
k,−(d,i) + βf )

(4)

Fig. 1. Plate notation of HCT.

Eγ(πk,w′) =

∑
t∈w′(n

t
k,−(d,i) + γt)

L
∑V
f=1(n

f
k,−(d,i) + γf )

, (5)

where φk,w and πk,w′ respectively refer to the probabilities
of generating word w and cw′ given topic k. L is the size of
context window. ntk,−(d,i) is the number of word t belonging
to topic k without the ith word in document d. Based on
Definition 5, we introduce a hidden variable sw′,w to present
the sense of word w in context w′, where sw′,w is generated
from:

sw′,w ∼ (1− µw′,w)φk,w + µw′,wπk,w′ .

For weight µw′,w, based on Definition 5, it can be regarded
as the probability for vlw′,w in a mixture of topic distributions
of vgw and vlw′,w. Therefore, given topic k, µw′,w can be
estimated by the Bayes Rule [38]. Specifically, for the ith
word w in document d, we obtain µw′,w by the probabilities
of topic k in vgw and vlw′,w, as Eq. (6):

µw′,w , P (vlw′,w|k) =
P (k, vlw′,w)

P (k,vgw) + P (k, vlw′,w)
, (6)

where P (k,vgw) refers to the probability of topic k in vg and
P (k,vlw′,w) refers to that in vlw′,w. Their calculations are:

P (k,vgw) =
φk,w∑K

s=1(φs,w)
∝

nwk,−(d,i) + βw∑K
s=1(n

w
s,−(d,i) + βw)

,

P (k, vlw′,w) =
πk,w′∑K

s=1(πs,w′)

∝
1/L

∑
t∈w′ n

t
k,−(d,i) + γt∑K

s=1

[
1/L(

∑
t∈w′ n

t
k,−(d,i) + γt)

] ,
where nwk,−(d,i) is the number of word w in the dataset which
belongs to topic k without the ith word in document d.

D. Model Description

The plate notation is as shown in Figure 2. We introduce five
new variables π, γ, cw′ , sw′,w and µw′,w to traditional LDA,
where π represents the topic-pseudo word distribution with a
parameter of γ. cw′ refers to a pseudo word for the average of
context words. sw′,w represents the sense of word w in context
w′. µw′,w refers to the Local Sense Weight. For the other
variables, θd represents the topic distribution of document d
with parameter α. φk is the topic-word distribution of topic
k with parameter β. w is a word in a document and z is
its corresponding topic. For a dataset of D documents with a



Algorithm 1: Parameter Estimation Algorithm
Input: A set of D documents of length Nd; number

Niter of iterations; number K of topics;
Dirichlet parameters α, β and γ; context
window size L

Output: For each document d, topic distribution θd;
for each topic k, word distribution φk
(1 ≤ k ≤ K);

1 Initialize topic assignments randomly and set µw′,w by
0.5 for all words in documents D with context words
of w′

2 for iteration = 1 to Niter do
3 for d = 1 to D do
4 for i = 1 to Nd do
5 Update µw′

(d,i)
,w(d,i)

by Eq. (6).
6 Assign a topic z(d,i) from P(d,i) by Eq. (7).

7 Update θd and topic-word matrix M .

8 return topic-word matrix M , θd for each document d
as well as µw′

(d,i)
,w(d,i)

for each word.

vocabulary of size V and latent topics indexed in {1, ...,K},
the generative process of HCT is described as follows:

1) Generate φk for each topic k: φk ∼ Dir(β).
2) For each document d:

a) Generate θd for document d: θd ∼ Dir(α).
b) For each word w in d (index by i):

i) Assign topic z(d,i) by θd: z(d,i) ∼ Cat(θd).
ii) Obtain context words w′ and generate topic-

pseudo word distribution πk: πk ∼ Dir(γ).
iii) Generate w by φk: w ∼ Cat(φk).
iv) Generate cw′ by πk: cw′ ∼ Cat(πk).
v) Calculate µw′,w by Eq. (6).

vi) Generate sw′,w by z(d,i), φk,w and πk,w′ :
sw′,w ∼ (1−µw′,w)φz(d,i),w+µw′,wπz(d,i),w′ .

φk and πk share the same topic-word matrixM which records
the number of occurrence for each word in different topics.
Based on M , φk and πk are calculated with reference to their
respective Dirichlet parameters β and γ. Each row and column
ofM respectively corresponds to a topic-word distribution and
a topic vector of a word.

E. Parameter Estimation

For complex probability models, obtaining the optimal
parameters directly by point estimation is difficult. Therefore,
except for α, β and γ, the parameters of our model are
approximately estimated by Gibbs sampling [35], which is
one of the widely used sampling methods based on Markov
chain Monte Carlo (MCMC) [39]. In the estimation proce-
dure, we need to calculate conditional distribution P(d,i),k=
P (z(d,i)=k|wd,i,zd,−(d,i),w

′
(d,i),µ(d,i),α,β,γ), for each doc-

ument d, where w(d,i) represents the ith word in d and
zd,−(d,i) refers to the topic assignments for all words in d

except word w(d,i). w′(d,i) is the context words of w(d,i) and
µ(d,i) refers to the Local Sense Weight of w(d,i). P(d,i),k is
computed as follows (See Appendix B for detailed derivation):

P(d,i),k ∝Eα(θd,k)[
(1− µ(d,i))Eβ(φk,t) + µ(d,i)Eγ(πk,w′

(d,i)
)

]
,

(7)

where Eα(θd,k) refers to the expectation of the probability for
topic k in document d, which can be estimated by:

Eα(θd,k) ∝ (nd,k,−(d,i) + α), (8)

where nd,k,−(d,i) is the number of words in d belonging to
topic k. Eβ(φk,t) and Eγ(πk,w′

(d,i)
) are the expectations of the

probabilities for word wt and pseudo word of context words
w′(d,i). They are calculated by Eqs. (4) and (5). Based on
Eq. (7), we obtain topic assignment probability P(d,i),k for
each word in d, so as to compute their corresponding topic
distribution P(d,i). Detailed steps are shown in Algorithm 1.

IV. EXPERIMENTS

We conducted both quantitative and qualitative analyses.
Firstly, we use three benchmark datasets 20Newsgroups4

(20NG), Toxic Comments5 (T-COM) and Sanders Tweet6

(Tweet) in the quantitative analysis for evaluating the word
sense estimation qualities, document classification effects, and
topic modeling accuracy. In qualitative analysis, we use 20NG
and T-COM to verify the effects of our approach in capturing
various domain-specific word senses.

20NG is a collection of approximately 20,000 newsgroup
documents, organized into 20 different newsgroups, each
corresponding to a different topic. T-COM is a dataset of
Wikipedia comments which human raters have labeled for
toxic behavior, i.e., comments which are rude, disrespectful,
or controversial. Tweet is a twitter sentiment corpus created
by Sanders Analytics, which consists of 5513 hand-classified
tweets. Each tweet was classified for one of four different
topics. For all the datasets, stop words were removed in
advance.

To validate the proposed model HCT, we test the following
baseline methods: a traditional topic model LDA [23], two
word embedding methods combined with topic modeling,
TWE-1 [18] and STE [19], two topic models CGTM [32]
and w2v-LDA [33] which are combined with a Skip-gram
based word embedding model, as well as two sense cluster
based embedding methods EHModel [16] and MSSG [17].
Moreover, in the quantitative analysis, we combine our model
HCT with a skip-gram based word embedding framework [24]
as another testing method (denoted by HCT-S). Its integration
principle is similar to TWE-1 [18], where the difference is that
we take the sense vector for each word occurrence rather than
its topic assignment as additional input features. The hyper-
parameters (α, β and γ) were all fixed to 0.05, and the size

4http://qwone.com/∼jason/20Newsgroups/
5http://kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
6https://github.com/zfz/twitter corpus



TABLE I
COMPARISON OF THE AVERAGE SIMILARITIES BETWEEN SENSE CLUSTERS

OF EACH WORD (Csc).

K EHModel MSSG TWE-1 STE w2v-LDAt CGTMt HCTt HCT-S

Csc
100 0.819 0.822 0.849 0.832 0.887 0.876 0.848∗ 0.833
200 0.815 0.814 0.837 0.821 0.875 0.864 0.836∗ 0.825

(a) K=100 (b) K=200
Fig. 2. Comparison of average similarities between vectors of each word and
its Top-n (n ∈ [1, 2000]) nearest words based on the cosine similarity on
20NG dataset.

L of context window L=10 (See Appendix A for parameter
setting experiments).

A. Quantitative Analysis

The quantitative experiments are conducted on 20NG, T-
COM, and Tweet, in terms of three aspects: classification
effect, sense estimation quality, and topic modeling accuracy.

1) Sense Estimation Quality: To investigate sense esti-
mation qualities, we evaluate the differences among various
senses for each word and those among its synonyms on
20NG. In this analysis, the differences are measured by the
cosine similarity. A lower value reflects higher discrimination
between different senses or words, corresponding to a better
sense estimation quality. We used KMeans [40] to cluster the
sense vectors, where the cluster number are determined by
Silhouette Coefficient7. We chose the cluster number (from 2
to 10) with the highest Silhouette value as the parameter for
KMeans, while other parameters remained default.

We calculated the average cosine similarities between sense
clusters of each word (denoted by Csc, as shown in Table
I) , as well as the average cosine similarities between each
word vector and its Top-n (n ∈ [1, 2000]) nearest word vectors
(denoted by Cw, as shown in Figure 2), where the word vector
is represented by the mean of its sense vectors. ∗ indicates the
best scores yielded by topic models (labeled by t), and bold
fonts indicate the best ones of all the baselines. We see that
the lowest Csc are achieved by the clustered based methods
(EHModel and MSSG). In all cases, HCT-S is superior to
most of the others, and HCT performs the best in the topic
models. The word semantic divisions by contexts clustering
can directly clarify the distinctions between different senses

7The Silhouette Coefficient ranges in [−1, 1], where a higher value
indicates that the object is better matched to its own cluster and poorly
matched to other clusters [26].

TABLE II
COMPARISON OF CLASSIFICATION PERFORMANCE ON T-COM.

Method K Precision Recall F-Score
LDAt

100

0.774±0.009 0.767±0.009 0.771±0.008
EHModel 0.771±0.009 0.763±0.009 0.767±0.007
MSSG 0.783±0.009 0.779±0.007 0.781±0.007
TWE-1 0.819±0.007 0.824±0.007 0.821±0.006
STE 0.825±0.008 0.828±0.008 0.826±0.008
w2v-LDAt 0.826±0.009 0.822±0.009 0.824±0.008
CGTMt 0.828±0.008 0.825±0.008 0.827±0.007
HCTt 0.835±0.009∗ 0.831±0.009∗ 0.832±0.008∗
HCT-S 0.851±0.011 0.854±0.009 0.852±0.011
LDAt

200

0.806±0.005 0.788±0.005 0.797±0.005
EHModel 0.808±0.005 0.801±0.005 0.804±0.005
MSSG 0.814±0.005 0.811±0.005 0.812±0.005
TWE-1 0.825±0.004 0.823±0.004 0.824±0.004
STE 0.831±0.004 0.834±0.004 0.832±0.003
w2v-LDAt 0.831±0.007 0.830±0.007 0.830±0.007
CGTMt 0.835±0.005 0.832±0.005 0.832±0.005
HCTt 0.849±0.005∗ 0.852±0.005∗ 0.849±0.005∗
HCT-S 0.862±0.007 0.868±0.007 0.865±0.007

TABLE III
COMPARISON OF CLASSIFICATION PERFORMANCE ON 20NG.

Method K Precision Recall F-Score
LDAt

100

0.689±0.014 0.663±0.015 0.676±0.012
EHModel 0.799±0.013 0.797±0.013 0.794±0.013
MSSG 0.814±0.014 0.812±0.015 0.813±0.012
TWE-1 0.848±0.012 0.847±0.012 0.847±0.011
STE 0.851±0.011 0.857±0.011 0.854±0.010
w2v-LDAt 0.839±0.0011 0.831±0.0011 0.835±0.0011
CGTMt 0.841±0.009 0.835±0.009 0.838±0.008
HCTt 0.857±0.012∗ 0.851±0.013∗ 0.855±0.012∗
HCT-S 0.877±0.014 0.871±0.014 0.875±0.014
LDAt

200

0.708±0.005 0.707±0.005 0.707±0.005
EHModel 0.811±0.013 0.807±0.013 0.808±0.013
MSSG 0.824±0.014 0.821±0.015 0.823±0.012
TWE-1 0.857±0.012 0.855±0.012 0.856±0.011
STE 0.863±0.011 0.859±0.011 0.861±0.010
w2v-LDAt 0.845±0.007 0.838±0.007 0.841±0.007
CGTMt 0.848±0.005 0.841±0.005 0.845±0.005
HCTt 0.868±0.005∗ 0.872±0.005∗ 0.871±0.005∗
HCT-S 0.878±0.007 0.882±0.007 0.881±0.007

of a word. However, it may obscure the differences to other
words, especially those with similar usages. There is a trade-
off between improving the sense differences of a word and
preserving the word distinctions with other words. Ignoring the
differentiation to other words while dividing the word senses is
likely to confuse their similar sense clusters, and thus reducing
the differences between words. Furthermore, for the word
embedding based methods, their Cw are lower than the topic
models as the number of nearby words involved increases.
One possible reason is that the optimization targets of these
two paradigms are different. The embedding models focus on
optimizing word vectors, while topic models aim at optimizing
the topic distributions of documents. This difference directs the
embedding vectors more sufficiently to reflect the semantic
similarities and differences between words. In the following
experiments, we will discuss their complementary nature in
the document representation task.

2) Document Classification: To evaluate the quality of
document representation vectors, we conducted classification



TABLE IV
COMPARISON OF CLASSIFICATION PERFORMANCE ON TWEET.

Method K Precision Recall F-Score
LDAt

100

0.650±0.021 0.651±0.021 0.651±0.020
EHModel 0.668±0.011 0.664±0.011 0.665±0.011
MSSG 0.677±0.013 0.675±0.011 0.675±0.011
TWE-1 0.682±0.008 0.681±0.008 0.682±0.008
STE 0.691±0.009 0.688±0.009 0.689±0.008
w2v-LDAt 0.683±0.008 0.682±0.007 0.682±0.007
CGTMt 0.690±0.008∗ 0.686±0.007 0.688±0.007∗
HCTt 0.688±0.008 0.687±0.008∗ 0.687±0.008
HCT-S 0.717±0.009 0.716±0.009 0.716±0.009
LDAt

200

0.651±0.008 0.653±0.008 0.653±0.007
EHModel 0.671±0.006 0.675±0.006 0.672±0.005
MSSG 0.682±0.006 0.679±0.006 0.680±0.005
TWE-1 0.687±0.005 0.685±0.005 0.685±0.005
STE 0.702±0.006 0.697±0.006 0.697±0.005
w2v-LDAt 0.687±0.005 0.686±0.004 0.686±0.004
CGTMt 0.697±0.005 0.695±0.004 0.695±0.004
HCTt 0.699±0.005∗ 0.702±0.005∗ 0.700±0.005∗
HCT-S 0.725±0.007 0.728±0.007 0.727±0.007

experiments on three benchmark datasets. We randomly sam-
pled 12000 documents from 20NG, 10000 documents from T-
COM, and all the four classes in Tweet. We use Support Vector
Machines (SVM) [41] to predict ground truth labels from the
topic vectors of documents and used WEKA [42] for learning a
classifier with ten-fold cross-validation and default parameters.
The precision and recall as well as the macro averaged F1-
Score [43] (with the representation vector dimension K=100,
200) are presented as the evaluation metrics for this task. The
results (the mean and standard deviation) are reported in Tables
II, III, and IV, where ∗ indicates the best scores achieved
by the topic models, and bold fonts indicate the best scores
achieved by all the models. Topic models are labeled by t.
We see that HCT shows the best results in the topic modeling
based methods in most cases, and the integrated method HCT
combined with skip-gram is superior to all the other baseline
models on the three datasets.

Classification performance reflects the ability to distinguish
different classes of documents in their representation spaces.
HCT considers the relationships between the different senses
of each word in topic modeling, and thus achieve a better
trade-off between the differentiation of various senses of each
word and the semantic differences of synonyms. For short
text datasets, the context words for each word may occupy
the vast majority of the document; thus, their influence on
the word sense may counteract the role of the document
itself, such as the topic distribution. Therefore, our model has
limited improvement in classification accuracy on short text
datasets compared to other baselines. On the other hand, the
integrated models, which combine both the topic modeling and
word embedding, are more effective than the other baselines.
However, they both assume word senses under each topic
dimension are different. Nevertheless, it is common that a
sense could belong to multiple topics, and the number of
senses for each word is different; thus, this explicit and
compulsory division for word senses is likely to decrease the
accuracy of their embedded vectors. Another significant issue

TABLE V
COMPARISON OF NPMIS (THE MEAN AND STANDARD DEVIATION) ON

DATASETS T-COM, 20NG, AND TWEET (K = 100, 200).

Method K NPMI
T-COM 20NG Tweet

LDA

100

-12.2±0.3 -8.2±0.3 -15.3±0.4
w2v-LDA -9.6±0.3 -7.7±0.5 -12.8±0.6
CGTM -8.4±0.5 -6.7±0.4 -11.3±0.5
HCT -7.8±0.3 -6.5±0.3 -11.4±0.3
LDA

200

-13.6±0.4 -9.4±0.2 -16.6±0.2
w2v-LDA -11.5±0.4 -8.3±0.3 -13.7±0.4
CGTM -10.3±0.4 -7.8±0.3 -12.2±0.2
HCT -9.7±0.3 -7.2±0.3 -11.8±0.2

is that all the baseline models neglect the degree of dependency
for a word sense on its context words. However, these degrees
of the dependencies of a sense varies from its usage frequency.
For example, a non-standard use of a word is more dependent
on its context than its standard use [13], [30]. These problems
might be the leading causes of their performance bottlenecks.

Besides, the complementarity of topic modeling and word
embedding improves the performance of the integrated meth-
ods. For most topic modeling based methods, embeddings are
mainly used to improve the accuracy of the topic assignment
for each word (CGTM and w2v-LDA). This indirect influence
on topic modeling cannot sufficiently reflect the context infor-
mation captured by the embedding models. For the embedding
based models (TWE-1 , STE, and HCT-S), the topic modeling
results are inputted as additional features and directly utilized
in the word vector estimation, which might be the main reason
for embedding-based integrated methods being generally better
than other integrated ones in this analysis.

3) Topic Modeling Accuracy: As a topic modeling method,
we evaluate the accuracy of the discovered topics by calcu-
lating the average normalized pointwise mutual information
(NPMI) for each method. NPMI is a popular metric of topic
modeling quality by measuring the coherence of a topic based
on point-wise mutual information [44]. It assumes that a
topic is more coherent if the most probable words in the
topic co-occur more frequently [45]. Besides, topic coherence
can also reflect the matching between the topic assignment
and semantics for each word, since semantic expressions in
a document are usually coherent and segmented (such as
paragraphs and sections) [46]. A higher NPMI score indicates
that the topic distributions are semantically more coherent.
Given the T most probable words of topic k, the NPMI is:

NPMI(k) =
∑

1≤i<j≤T

1

− logP (wi, wj)
log

P (wi, wj)

P (wi)P (wj)
,

where P (wi, wj) and P (wi) are the probabilities of word pair
(wi, wj) and word wi, respectively, and are both estimated
from an external dataset8.

The results of topic models (HCT, LDA, w2v-LDA, and
CGTM) are shown in Table V, where bold fonts highlight the

8We use English Wikipedia as the external dataset, and collected words
that co-occur in a window of ±5 (https://dumps.wikimedia.org/enwiki/).



best results. We see HCT shows the best results in most cases,
which confirms that our model can generate more accurate
document vectors. HCT generates both words and context
words as well as uses the context and adaptive weights to
clarify word semantics, reducing the uncertainty of word topic
assignment. The others use embedding vectors to clarify the
word topic assignment [33]. However, the embedding vectors
are learned by all their contexts, which is difficult to help
specify a rare sense for a word in a specific context.

B. Qualitative Analysis

We conducted qualitative experiments on 20NG and T-
COM, where we set the representation topic number K=200.
Firstly, we verify whether our model can capture useful
domain-specific senses by the estimated sense vectors. We
randomly sampled 10000 documents from 20NG with 20
classes9 and 7000 comments from T-COM covering three
sensitive themes of “religion”, “race”, and “homosexuality”.
We respectively select three high frequent words which are
likely to cover the most related themes of each datasets
according to the Longman Dictionary10 (“card”, “power”,
“key” for 20NG, and “religion”, “race”, “homosexuality” for
T-COM) as examples and compute the Word Sense Vector
vw′,w of each word w within each context w′ by Definition
5. We used the same settings as those in quantitative analysis
for sense vectors clustering, and visualized the results by t-
SNE [40].

As shown in Figure 3 (a-f), each point represents a sense
vector, and each color refers to a sense cluster. We see that the
sense vectors exhibit varying degrees of clustered properties.
This observation verifies our hypothesis in Definition 1. For
further study of the semantics for each cluster, we then counted
the high frequent context words for each cluster and presented
the interpretations which are likely to be relevant to these
clusters based on the Longman Dictionary, as shown in Tables
VI and VII. From Table VI, we see that although not all
groups of context words can be abstracted to an exact meaning,
the differences between them are clear. For instance, the two
sense clusters “power” possibly correspond to “a kind of
energy” (c1) and “a supernatural ability” (c2), respectively.
The two clusters (c1 and c2) of “card” respectively refers to
“a computer-related equipment” and “a person identification
certificate”. For the word “key”, the differences between the
clusters are obvious, where the senses of c1 are possibly
relevant to the sense “encryption”, the ones of c2 may refer
to “the keyboard buttons”, c3 possibly refer to “a tool to
lock or unlock a door”, and c4 may represents “a kind of
password or serial number”. Combining Tables VI and VII,
we see that the interpretations for the above senses might
be found in the knowledge library, while the following three
examples show more particular and fine-grained senses for
a specific dataset. For example, our model captured three
entities that the word “religion” refers to: “the Christianity”

9These 20 classes mainly cover the themes of “electronics”, “sports”,
“religion”, “politics”, “industry” (http://qwone.com/∼jason/20Newsgroups/).

10https://www.ldoceonline.com/dictionary/

(a) vpower (b) vcard (c) vkey

(d) vreligion (e) vrace (f) vhomosexual

(g) µpower (h) µcard (i) µkey

(j) µreligion (k) µrace (l) µhomosexual
Fig. 3. Visualization for each example word w by their Word Sense Vectors
(vw) and the corresponding Local Sense Weights (µw) in the 20NG. Each
point in (a-f) or bar in (g-l) refers to a word item in the dataset, where each
color corresponds to a sense cluster.

(c1), “the Islam” (c2) and “the communist” (c3). Moreover,
we can also recognize the positions or tendencies represented
by different clusters according to obviously uncomfortable or
discriminatory context words, such as c2 and c3 of the word
“race”, as well as c2 of “homosexual”. These results confirm
our assumptions about the word sense vector, e.g., Definition
5, and the effectiveness of obtaining domain-specific senses.

Besides, we further analyze the relationships between the
Local Sense Weight µw′,w and vw′,w. Figure 3 (g-l) shows
the weights for each example word, where the colors of bars
correspond to those of the clusters in Figure 3 (a-f). We
observe that clusters with fewer sense vectors have higher
weights than others, and vectors that belong to the same cluster
correspond to similar weights. These observations signify that
µw′,w reflects a difference between a sense cluster and its
corresponding general one. The higher the weights, the more
different from its general sense and the more dependent on its
context words. These phenomena also confirm a viewpoint of
a lexicography sect about the formation of word senses, that
corpus citations of a word fall into one or more distinct but
related clusters. Each of these clusters, if large enough and
distinct enough from others, forms a distinct word sense [13].

V. CONCLUSION

We propose a hybrid context based topic model for handling
the WSD problem in document representation without data



TABLE VI
CONTEXT WORDS FOR EACH SENSE CLUSTER OF EXAMPLE WORDS. BOLD FONTS INDICATE THE HIGH-FREQUENCY CONTEXT WORDS WHICH HELP

CLARIFY THE SEMANTIC DIFFERENCE. THE COLOR FOR EACH CLUSTER SYMBOL c CORRESPONDS TO THAT OF EACH CLUSTER IN FIGURE 3.

Word Cluster Top-10 High Frequent Words in Context

power
c1 “people”, “problem”, “drive”, “supply”, “connector”, “hard”, “disk”, “nuclear”, “battery”, “device”
c2 “god”, “lord”, “play”, “person”, “christ”, “jesus”, “son”, “human”, “town”, “believe”

card
c1 “video”, “drive”, “system”, “graphic”, “problem”, “controller”, “support”, “monitor”, “vga”, “bit”
c2 “people”, “citizen”, “carry”, “identify”, “letter”, “recognize”, “signed”, “nationality”, “number”, “authority”
c3 “key”, “lose”, “tool”, “guess”, “remember”, “law”, “insurance”, “left”, “hold”, “game”

key

c1 “chip”, “escrow”, “system”, “public”, “bit”, “encryption”, “number”, “message”, “security”, “algorithm”
c2 “keyboard’, “character”, “application”, “file”, “program”, “system”, “change”, “monitor”, “sequence”, “code”
c3 “home”, “car”, “door”, “lock”, “know”, “line”, “people”, “work”, “launch”, “available”
c4 “window”’, “drive”, “write”, “machine”, “number”, “theory”, “release”, “cable”, “printer”, “series”

religion
c1 “god”, “state”, “jewish”, “christian”, “judaism”, “history”, “faith”, “people”, “source”, “life”
c2 “islam”, “god”, “faith”, “people”, “politics”, “truth”, “culture”, “muslim”, “history”, “believe”
c3 “god”, “eastern”, “socialist” , “communist”, “science”, “people”, “politics”, “believe”, “ethnicity”, “sex”

race
c1 “people”, “concept”, “religion”, “ethnicity”, “difference”, “article”, “language”, “human”, “world”, “author”
c2 “nazi”, “holocaust”, “victims”, “sex”, “people”, “dark”, “age”, “prison”, “crime”, “family”
c3 “white”, “ethnic”, “people”, “black”, “group”, “world”, “african”, “asian”, “nationalism”, “war”

homosexual
c1 “article”, “gay”, “people”, “life”, “sex”, “children”, “enjoy”, “female”, “male”, “parent”
c2 “man”, “ass”, “fuck”, “shit”, “hole”, “beat”, “dog”, “think”, “pick”, “piece”

TABLE VII
INTERPRETATIONS IN THE LONGMAN DICTIONARY FOR THE GENERATED

SENSE CLUSTERS. ci(S) IN EACH ROW REPRESENTS THE POSSIBLY
RELATED CLUSTER(S).

Word Cluster(s) Interpretation
power c1 “energy that make a machine work”

card
c1 “a piece of equipment in a computer”

c2
“a small piece of plastic or paper that
contains information about a person”

key
c2 “the buttons on a computer keyboard”

c3
“a specially shaped piece of metal to
lock or unlock a door, start a car etc”

religion c1, c2 “a belief in one or more gods”

race c1, c2, c3
“one of the main groups that humans
can be divided into by their colour of
skin or other physical features”

homo-
sexual c1, c2

“someone, especially a man, is sexually
attracted to people of the same sex”

enrichment. By integrating topic distributions of both the con-
text in which a word occurs and those of its other occurrence
in sense estimation, the proposed model effectively captures
domain-specific word senses and preserves the differences
between synonyms. Besides, we proposed the “Bag-of-Senses”
hypothesis, based on which our model generates senses instead
of words. Our experiments confirm the effectiveness of our
model to obtain the domain-specific word sense vectors and
showed that our proposal outperforms the baseline models in
terms of sense estimation quality, classification performance,
and topic modeling accuracy. In future work, we will further
optimize the parameter estimation steps and use more efficient
algorithms (e.g., the Variational Inference [47]) to improve the
adaptiveness of our model for more substantial scale datasets.

Fig. 4. F1-Scores (the mean and standard deviation) with different values of
L on “Tweet”, “T-COM” and “20NG”.

APPENDIX A
DERIVATION OF OUR GIBBS SAMPLING

For each document d, the posterior probability, P(d,i),k is
computed as follows:

P(d,i),k ∝ P (z(d,i) = k, sw′
(d,i)

,(d,i) = st|w′(d,i),α,β,γ)

= P (z(d,i) = k,w(d,i) = t, cw′
(d,i)

= ct′ |α,β,γ)

=

∫
P (z(d,i) = k|θd)P (θd|α)dθd[

(1− µ(d,i))

∫
P (w(d,i) = t|φk)P (φk|β)dφk

+ µ(d,i)

∫
P (cw′

(d,i)
= ct′ |πw′

(d,i)
,k)P (πw′

(d,i)
,k|γ)dπw′

(d,i)
,k

]
Based on the definition of Dirichlet distribution, conditional
distribution P(d,i),k can be simplified as:

P(d,i),k ∝ Eα(θd,k)
[
(1− µ(d,i))Eβ(φk,t) + µ(d,i)Eγ(πw′

(d,i)
,k)

]



According to the definition of the expectation of Dirichlet
Distribution, we obtain conditional probability P(d,i),k as
below:

P(d,i),k ∝ (nd,k,−(d,i) + αk)

[
µ(d,i)

1

L

∑
t∈w′(n

t
k,−(d,i) + γt)∑V

f=1(n
f
k,−(d,i) + γf )

+ (1− µ(d,i))
ntk,−(d,i) + βt∑V

f=1(n
f
k,−(d,i) + βf )

]
.

APPENDIX B
PARAMETER SENSITIVITY

For investigating the sensitivity on L, we tested the clas-
sification performances in 20NG, T-COM, and Tweet with
different values of L with K=200, fixing other parameters as
previous settings. The results are shown in Figure 5. We see the
F1-Score increases sharply as L increases and tends to saturate
when L reaches around 10. As L continues to increase, the
F-Score starts to gradually decline. Although the best value of
L varies with the dataset, setting L=10, in general, can well
reflect the semantic context of a word.
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