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Abstract. In this paper, we test two anomaly detection methods based
on Generative Adversarial Networks (GAN) on office monitoring includ-
ing humans. GAN-based methods, especially those equipped with en-
coders and decoders, have shown impressive results in detecting new
anomalies from images. We have been working on human monitoring in
office environments with autonomous mobile robots and are motivated
to incorporate the impressive, recent progress of GAN-based methods.
Lawson et al.’s work tackled a similar problem of anomalous detection
on an indoor, patrol trajectory environment with their patrolbot with
a GAN-based method, though crucial differences such as the absence of
humans exist for our purpose. We test a variant of their method, which
we call FA-GAN here, as well as the cutting-edge method of GANomaly
on our own robotic dataset. Motivated to employ such a method for a
turnable Video Camera Recorder (VCR) placed at a fixed point, we also
test the two methods for another dataset. Our experimental evaluation
and subsequent analyses revealed interesting tendencies of the two meth-
ods including the effect of a missing normal image for GANomaly and
their dependencies on the anomaly threshold.

Keywords: One-Class Anomaly detection - Generative Adversarial Net-
works - Human monitoring.

1 Introduction

Monitoring an office environment, especially the humans inside, represents an
interesting problem for intelligent systems from both scientific and industrial
viewpoints. Detecting anomalies is one of the most fundamental and yet impor-
tant subproblems, though collecting and even knowing such anomalies before-
hand are at the same time laborious and difficult. One-class anomaly detection,
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which takes only normal data in the training stage to detect anomalies in the
test stage, solves these shortcomings. Recently Generative Adversarial Networks
(GAN) [1], which are deep neural networks capable of learning the probabilistic
distribution of the given, originally unlabeled, examples, have shown impressive
results in detecting new anomalies from images. For instance, Lawson et al. re-
port that the false positive rate of 4.72% achieved with their previous method
[2] dropped to 0.42% with their GAN-based method in an anomaly detection
problem by their patrolbot [3].

We have been working on office monitoring including humans inside with
autonomous mobile robots, e.g., skeleton clustering [4], facial expression cluster-
ing [5], and fatigue detection [6]. Recently our interests are focused on one-class
anomaly detection [7, 8], though these works adopt non-GAN-based approaches.
Motivated to incorporate the impressive, recent progress of GAN-based meth-
ods, we test two most relevant methods, which we explain in Section 2, on our
robotic and VCR datasets.

2 Related Work

Recently GAN-based one-class anomaly detection has attracted considerable at-
tention of the machine learning community. Schlegl et al. [9] proposed AnoGAN
to detect anomalies on Optical Coherence Tomography (OCT) data. They as-
sumed that the trained latent space represents the true distribution of the train-
ing data. However, their method is time-consuming in finding a latent vector
that corresponds to an image that is visually most similar to a given query
image [10] in the test stage. To cope with the shortcoming that the parame-
ters need to be updated in the test stage of AnoGAN, Zenati et al. proposed an
anomaly detection method [11] that is efficient at test time by leveraging BiGAN
[12], which simultaneously learns an encoder with a decoder and a discriminator
during training. It can avoid the computationally expensive process during the
test stage. Sabokrou et al. proposed a framework for one-class novelty detection
which consists of a reconstructor and a discriminator [13]. They added noise to
the original normal examples to train the reconstructor network to make it more
robust and employed the discriminator as a detector to classify whether the input
is abnormal. A deep generative model trained on a single class cannot generate
examples belonging to other classes. Perera et al. focused on this problem and
proposed OCGAN for novelty detection [14]. They restricted the boundary of
the latent space and used a latent discriminator and a visual discriminator to
ensure the images generated from any latent vector belong to the same class.
Different from the traditional GAN-based encoder-decoder approaches, Akcay
et al. [10] employed an encoder-decoder-encoder structure to capture the two
latent vectors which show significant differences with an abnormal example. The
added encoder aids learning the data distribution for the normal examples. We
adopt their GANomaly [10] for evaluation in our experiments as we consider it
a relevant cutting-edge method.
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‘We have witnessed a number of developments and applications of autonomous
mobile robots in anomaly detection. Chakravarty et al. [15] used modified sparse
and dense stereo algorithms to detect anomalies that were never shown during
the training stage for a patrolbot. However, light intensity has a great impact
on their detection accuracy. Lawson et al. [2] proposed a method with clustering
normal features from CNNs in a fixed path with a patrolbot. Abnormal fea-
tures would produce large distances to these clusters. Later, they extended their
work in [3] to find anomalies with an autoencoder-decoder GAN, which achieved
much better performance as we stated in the previous section. We extend their
method by replacing their autoencoder with a more sophisticated encoder [16],
and call the extended method FA-GAN in this paper. We also use FA-GAN in
our experiments.

The robotic data and the VCR data we use in our experiments have been
introduced in our previous work on detecting anomalous image regions with
deep captioning [8]. In the work, our anomaly detector represents each salient
region with its image, caption, and position features and uses an incremental
clustering method [17] to detect anomalies with these features. The point is to
exploit another dataset used in training a combination of Convolutional Neural
Network (CNN) [18] and Long Short-Term Memory (LSTM) [19,20] through
deep captioning [21]. We will explain the details of our datasets in Section 4.1.
Since the method [8] uses deep captioning and conducts evaluation on image
region level, we leave its comparison with GANomaly and FA-GAN for our
future work.

3 Tested Methods

3.1 FA-GAN

Lawson et al. use the DCGAN approach [22], adopting an architecture that is
similar to what was proposed in Context Encoders [16]. Unlike DCGAN, they use
an autoencoder-style with a bottleneck size of 4096. Considering the more com-
plex nature of our office monitoring problem, we replace their autoencoder with a
more sophisticated encoder in [16], as we explained in the previous Section. The
resulting FA-GAN has an encoder-decoder architecture, which is shown in Fig. 1
(a). The encoder G is composed of convolution layers and batch-normalization
layers with LeakyReLU activation function. The decoder Gp adopts the struc-
ture of DCGAN [22] with deconvolutional layers to generate images from a la-
tent vector. The discriminator D has a similar structure to Gg and uses Sigmoid
function to output whether the input is real or generated.

Given a training set X, which consists of N normal images, X = {z1,...,2n},
the generator G first reads an input image x as the input to its encoder Gg to
downscale z by compressing it to a latent vector z = Gg(x). Then the decoder
Gp tries to reconstruct z to an image . To maximize the capability of recon-
structing an image, FA-GAN uses the adversarial loss [1] shown in Eq. 1.

Loss_.FA=E,.,, [logD(z))] + Egzmp, [log(l — D())] (1)
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Fig. 1. Architectures of FA-GAN (the left one) and GANomaly (the right one)

In the test stage, the generator G produces the latent vectors of z and 2
from the original input image and its corresponding generated image through
the encoders in the network, respectively. Note that the encoder in the dashed
rectangle is not used during the training stage. It is just a copy of the former one
after training. Finally, a test example can be determined as normal or abnormal
by comparing its abnormal degree A with a user-given threshold ¢, where A =
||z — 2|5 is computed as the distance between the two latent vectors z and 2. If
A > ¢ then the image is predicted as anomalous, otherwise normal. Since the
network is only trained with normal data, the generator cannot reconstruct an
anomalous image well, which means there will be a large difference between the
two latent vectors.

3.2 GANomaly

GANomaly [10] has a similar architecture to FA-GAN. It also uses an encoder-
decoder generator in which the latent vector z of the original input is obtained by
Gg(z) = z. The difference is that there is one more encoder F to produce Z after
the generated image as shown in Fig. 1 (b). The parameters of the additional
encoder E are also optimized during the training stage, in which the distance
between z and Z is considered as a loss. After the second encoder E, the generated
image is downscaled to a latent vector Z = F(Z), which has the same size with
z.

The loss function Loss_.GANomaly of GANomaly consists of an adversarial
loss Lggy, a contextual loss Leo,, and an encoder loss Lg,. as in Eq. 2, where
Wadys Weon, and Wepne represent hyper-parameters. In Eq. 3, f(x) is a function
that outputs an intermediate layer of the discriminator given x [10]. To predict
whether a test example is abnormal, GANomaly uses the same computation
flow as FA-GAN, which is to compute the distance between z and Z, except 2 is
produced by the additional encoder E, and not Gg.

Loss_ GANomaly = WagyLady + WeonLeon + WeneLene (2)
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Fig. 2. Examples in the robotic dataset (the left two) and the VCR dataset (the right
two). From the left, the classes are normal, abnormal, normal, and abnormal.

Table 1. Distributions of the two datasets

Robotic dataset VCR dataset
training test training test
Normal 4768 343 16800 684
Abnormal 0 15 0 31
Lody = Egrp, || f(x) — EmNpmf(G(x))”z (3)
Leon = Exwpm ||$ - G(x)”l (4)
Lene = Egrop, |l2 — 2”2 (5)

4 Experimental Evaluation

4.1 Experimental Setup

To evaluate the two GAN-based methods on anomaly detection, we conduct
experiments with our robotic and VCR datasets, which we introduced in [8].
Fig. 2 shows several examples. The robotic dataset is taken in a room by our
TurtleBot2 with Kobuki, which is equipped with a Kinect v2. It contains frequent
scene changes as the robot moved in an office. The VCR dataset is taken with
a VCR placed on a spandrel wall. It has only a few scene changes as the VCR
was put on a fixed point and a human occasionally changed its angle. Table 1
shows the distributions of the datasets.

We install GANomaly [10] and implement FA-GAN [3] in PyTorch (v1.3.1
with Python 3.6.9). The networks are optimized by Adam [23] with an initial
learning rate of 0.0001, £;=0.5, and B2=0.999. We set the batch size to 32 and
each network is trained for 70 epochs. The hyper-parameters are set as wqq, = 1,
Weon, = D0, and wey. = 1. The size of latent vector is set to 4096 throughout the
experiments. We normalize all the anomaly scores obtained in the test set to the
range of [0,1].

4.2 Results

In this section, we first analyze the dependency of the performance in F1 score
on ¢ and then investigate the reasons behind the mistakes by the two methods.
The left two plots in Fig. 3 show the results of the dependency. We see that FA-
GAN outperforms GANomaly in the robotic dataset but loses to it in the VCR
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Fig. 3. F1 scores in terms of threshold ¢ (left two plots) and the ROC curve and AUC
(right two plots)
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Fig. 4. Histogram on the anomaly scores for the test data on the robotic dataset (the
left two plots) and the VCR dataset (the right two plots)

dataset. From Fig. 4 we can see the reasons. In (a), there is a clear boundary
to distinguish the normal and abnormal examples with FA-GAN on the robotic
dataset. GANomaly succeeds in concentrating the anomaly scores of all normal
examples in a small interval on the VCR dataset in (d). The right two plots in
Fig. 3 show the results in ROC curve and AUC.

We assume that setting ¢ to its best value is possible as long as the office
environment does not change drastically. Based on this assumption we conduct
our investigation on the best cases in terms of the value of ¢. We focus on
mistakes committed by the two methods, which are summarized in Table 2. In
the Table, FN and FP represent the number of false negatives and the number
of false positive, respectively. “Same examples” is the number of images wrongly
detected by both methods.

Table 2. Statistics of the wrongly detected examples

Robotic dataset VCR dataset
FN FP FN FP
FA-GAN 0 0 19 21
GANomaly 0 18 4 0
Same examples 0 0 2 0
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Fig.5. One of the FP examples with GANomaly in the robotic dataset. (a) Original
input. (b) Generated image with z by FA-GAN. (c) Generated image with 2 by FA-
GAN. (d) Generated image with z by GANomaly. (e) Generated image with 2 by
GANomaly.

Fig. 6. One of the correctly detected examples by the two methods. See the captions
of Fig. 5 for (a)—(e).

On the robotic dataset, we see from Table 2 that FA-GAN made no mistake
while GANomaly 18 false positives. Since the 18 examples look all similar, we
pick one of them and show it in Fig. 5 (a). The anomaly scores A are 0.968 in
GANomamly and 0.506 in FA-GAN. We also show the generated images by z
and £ with both methods in Fig. 5 (b)—(e) and see that the red rectangle region
in Fig. 5 (e) accounts for the large A in GANomaly.

We also pick an example which is similar to Fig. 5 (a) but correctly classified
by both methods and show it in Fig. 6 (a). The anomaly scores are 0.266 and
0.106 for FA-GAN and GANomaly, respectively. We see from Fig. 6 (b), (¢) and
(d), (e) that z and 2 are similar in both methods.

Further inspection revealed that no similar image to Fig. 5 (a) exists in the
training set while all other images in the test set have similar images in the
training set. These analyses show the higher generalization capability of FA-
GAN to GANomaly for this dataset. To justify our claim, we added random
noise to the 18 FP examples to generate 72 additional examples and added
them in the training set. We trained GANomaly on this dataset and obtained a
perfect result, i.e., no mistake committed and hence AUC = 1.0.

On the VCR dataset, we see from Table 2 that there are only 4 FN examples
with GANomaly but 19 FN examples and 21 FP examples with FA-GAN. This
dataset was recorded in one corner by the VCR, so the intuitive complexity of
the dataset is relatively reduced compared with the first dataset. Moreover, the
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(b) (e)

Fig. 8. One of the FN examples with the two methods. See the captions of Fig. 5 for

(a)—(e).

training set, which consists of 16800 examples, is large, so the second encoder
of GANomaly can well learn the distributions of normal feature in this dataset.
Fig. 7 (a) shows an FN example with FA-GAN, which is correctly detected by
GANomaly. Hiding under a table?® is considered as an anomaly because nobody
does it in the training set. The subsequent images in (b)—(e) are generated images
with z and Z by the two methods. Unlike in Fig. 5, the anomaly scores A in both
methods are small, which is justified by the small differences between (b) and (c)
as well as (d) and (e). The different results can be explained by the best values
of ¢. Fig. 4 shows the histograms on the anomaly scores A in the both methods.
It can be seen from Fig. 4 (b) that GANomaly concentrates the anomaly scores
of all normal examples between 0 and 0.12. Note that FA-GAN and GANomaly
adopted a relatively large and small values for ¢, which results in a false negative
and a true positive, respectively.

We also show in Fig. 8 one of the FN examples which were wrongly classified
by the two methods. Taking a selfie is considered as an anomaly because nobody
does it in the training set. Note that the difference between the images generated
by z and 2 is small. Fig. 9 shows an FP example with FA-GAN. We see that there
is a large difference between (b) and (c), especially on the middle part. However,
the last two generated images by GANomaly, which achieved an anomaly score
of 0.051, are similar.

3 Schools in Japan teach students to take this action under strong shakes during an
earthquake.
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Fig. 9. One of the FP examples with FA-GAN. See the captions of Fig. 5 for (a)—(e).

From the experiments above, we see that in overall the two methods show
good performance on the two datasets. We conclude that the two GAN-based
methods show their ability to solve the problem of anomaly detection on human
monitoring. However, the drawback of the methods is also obvious. For some
minor anomalies, e.g., the selfie in Fig. 8 (a), the latent vector z after the first
encoder does not reflect them, which makes z and Z be quite similar. It results
in a small anomaly score for such examples and thus these abnormal examples
will be predicted as normal. We can see these results in Fig. 8.

5 Conclusion

We applied two kinds of GAN-based methods, which are FA-GAN and GANomaly,
to the datasets collected by our autonomous robot and with a VCR, so that the
anomalies can be detected without any supervision. The results show that FA-
GAN performs better on the robotic dataset while GANomaly performs better on
the VCR dataset, possibly due to the different frequencies of the scene changes.
We analyzed the reason behind the dependency of the performance in F1 score
on ¢ through the histograms on the anomaly scores. Also, the methods occasion-
ally make wrong detection with minor anomalies in images due to the scarcity
of the scene in the training set or the loss of information in the latent vectors. In
general, the two GAN-based methods with encoder-decoder architectures should
perform well on our autonomous robot and VCR for human monitoring.

Our future work will take image captions into account to improve the per-
formance of anomaly detection. We think that the captions as weak labels can
provide additional useful information on anomaly detection, since we already
made some progress with a non-GAN-based approach [8].
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