

Covariance descriptor

- Natural way to fuse color/texture
- Robust against spatial misalignment

Hierarchical distribution

Global distribution is less discriminative (loses local structure)

> Distribution on local distributions is more discriminative (includes local structure)

Mean color of local regions

Major discriminative information is mean color (absent in covariance)

Related descriptors

	Covariance	Gaussian
Global	[Tuzel06]	[Gong09][Nakayama10] [Ma14][Serra15]
Hierarchical (two level)	[Li12] [Serra14]	[Ours]

High accuracy: includes both mean and covariance in patch/region levels > No learning process: hand crafted descriptor

(b) Patch Gaussian

Summarize pixel features inside a patch

(c) Flatten patch Gaussian

 $\mathcal{N}(oldsymbol{f};oldsymbol{\mu}_{s},oldsymbol{\Sigma}_{s})\sim 0$

Hierarchical Gaussian Descriptor for Person Re-Identification

Tetsu Matsukawa¹, Takahiro Okabe², Einoshin Suzuki¹, Yoichi Sato³ ¹Kyushu University, ²Kyushu Institute of Technology, ³The University of Tokyo

 \succ Characterize each pixel by d dim. feature vector f

Flatten patch Gaussians by considering underlying Riemannian Geometry of Gaussians

Embed Gaussians into Symmetric Positive Definite (SPD) matrix manifold (Sym_{d+1}^+) [Lovric00]

$$\mathbf{P}_{s} = |\mathbf{\Sigma}_{s}|^{-rac{1}{d+1}} \begin{bmatrix} \mathbf{\Sigma}_{s} + \boldsymbol{\mu}_{s} \boldsymbol{\mu}_{s}^{T} \\ \mathbf{\mu}_{T}^{T} \end{bmatrix}$$

2. Apply log Euclidean [Arsigny06] and half vectorization

 $= \operatorname{vec}(\log(\boldsymbol{P}_{s}))$

 $(d^{2}+3d)/2 + 1$ dim. e.g. <u>m = 45 when d = 8</u>

 μ_s

(d) <u>Region Gaussian</u>

Gaussian

- in m dim. Gaussian: $\mathcal{N}(\boldsymbol{g}; \boldsymbol{\mu}^{\mathcal{G}}, \boldsymbol{\Sigma}^{\mathcal{G}})$
- Weighted mean/covariance is used

$$\boldsymbol{\mu}^{\mathcal{G}} = \frac{1}{\sum_{s \in \mathcal{G}} w_s}$$
$$\boldsymbol{\Sigma}^{\mathcal{G}} = \frac{1}{\sum_{s \in \mathcal{G}} w_s}$$

(e) Flatten region Gaussians

(f) Feature vector

e.g. <u>7 region x 1081 dim. = 7567 dim.</u>

Color space fusion

(RGB, HSV, YCbCr)

Normalization

 $oldsymbol{z} = (oldsymbol{z} - \overline{oldsymbol{z}}) / \|oldsymbol{z} - \overline{oldsymbol{z}}\|_2$

Performance analysis on VIPeR

Performance comparison

GOG + XQDA achieves the new state-of-the art 49.7%, 57.8%, 24.7% rank-1rate on VIPeR, CUHK01, GRID dataset

On automatic detected dataset

Labeled Detected

IEEE 2016 Conference on **Computer Vision and Pattern** Recognition

CNPR2016

Experimental Results

CUHK03 (rank-1 rate)			
ds	Labeled	Detected	
sion+XQDA	67.3	65.5	
Ensemble	62.1	_	
+XQDA	52.2	46.3	
ed Deep	54.3	45.0	
ReID	20.7	19.9	

Feature extraction time Seconde / image

Seconds / image		
Methods	48x128 pixel	
LOMO	0.016	
Cov _{RGB}	0.021	
GOG _{RGB}	0.34	
GOG _{Fusion}	1.34	
gBiCov	7.8	

Project page : http://www.i.kyushu-u.ac.jp/~matsukawa/ReID/