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Abstract—Describing the color and textural information of a person image is one of the most crucial aspects of person re-identification
(re-id). Although a covariance descriptor has been successfully applied to person re-id, it loses the local structure of a region and mean
information of pixel features, both of which tend to be the major discriminative information for person re-id. In this paper, we present
novel meta-descriptors based on a hierarchical Gaussian distribution of pixel features, in which both mean and covariance information
are included in patch and region level descriptions. More specifically, the region is modeled as a set of multiple Gaussian distributions,
each of which represents the appearance of a local patch. The characteristics of the set of Gaussian distributions are again described
by another Gaussian distribution. Because the space of Gaussian distribution is not a linear space, we embed the parameters of the
distribution into a point of Symmetric Positive Definite (SPD) matrix manifold in both steps. We show, for the first time, that normalizing
the scale of the SPD matrix enhances the hierarchical feature representation on this manifold. Additionally, we develop feature norm
normalization methods with the ability to alleviate the biased trends that exist on the SPD matrix descriptors. The experimental results
conducted on five public datasets indicate the effectiveness of the proposed descriptors and the two types of normalizations.

Index Terms—Person re-identification, image feature descriptor, Gaussian distribution, Riemannian geometry, symmetric positive
definite matrices, log-Euclidean Riemannian metric
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1 INTRODUCTION

A PPEARANCE matching of person images observed in disjoint
camera views, referred to as person re-identification (re-id),

is receiving increasing attention, mainly because of its broad range
of applications [1], [2], [3]. In this task, the person images are
captured from various viewpoints and under different illumina-
tions, resolutions, human poses, and against various background
environments. These large intra-personal variations in person
images cause considerable difficulties during attempts to match
the person. In addition, similar clothes among different persons
add further challenges.

Person images are low in resolution and are further character-
ized by large pose variations; consequently, only coarse informa-
tion of person appearance would be robustly described. It has been
proven that the most important clue for person re-id is color infor-
mation such as color histograms and color name descriptors [4].
Because they cannot sufficiently differentiate different persons of
similar colors, textural descriptors such as a Local Binary Pattern
(LBP) and the responses of filter banks are often combined with
color descriptors [5], [6], [7]. To enhance the robustness against
complex combination effects of the variations, supervised learning
methods are often applied to the descriptors [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15].

A covariance descriptor [16] describes a region of interest
as a covariance matrix of pixel features. The covariance matrix
describes a statistical dependency between elements within pixel
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Fig. 1. Importance of hierarchal distribution: (a) Regions that have the
same distribution (mean/covariance) of pixel features (each color indi-
cates the same feature vector). (b) Local patches with a different pixel
feature distribution inside the regions. (c) Regions can be distinguished
via distributions of patch level distributions.

features and provides a natural way to fuse different modalities,
e.g., the color and texture, of pixel features into a single meta-
descriptor. Because the covariance matrix is obtained by averaging
the features inside the region, it remedies the effects of noise and
spatial misalignments, e.g., variations caused by pose changes. In
addition, the descriptor only requires coarse information around
pixels, which makes it suitable for processing low-quality images
captured by surveillance cameras [17]. Consequently, the covari-
ance descriptor has been successfully applied to person re-id [18],
[19].

In this paper, we propose novel meta-descriptors based on
the hierarchical Gaussian distribution of pixel features. More
specifically, our descriptors densely extract local patches inside
a region and regard the region as a set of local patches. The region
is firstly modeled as a set of multiple Gaussian distributions, each
of which represents the appearance of one local patch. We refer
to such a Gaussian distribution representing each local patch as a
patch Gaussian. The characteristics of the set of patch Gaussians
are again described by another Gaussian distribution. We refer to
this Gaussian distribution as a region Gaussian. In both steps, we
embed the parameters of one Gaussian distribution into a point on
the manifold of Symmetric Positive Definite (SPD) matrices where
several Riemannian metrics on the manifold are defined [20], [21].

Our motivation for the use of a hierarchical distribution is
to develop discriminative meta-descriptors by focusing on the
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(a) Original (b) Local mean  (c) Mean removed

Fig. 2. Importance of mean: (a) Original images. (b) Mean RGB values
of local patches. (c) Mean removed images. Determining the same
persons from (b) is easy, whereas difficult from (c).

structural appearance of person images. A person’s clothes consist
of local parts, each of which has local color/texture structures. The
spatial arrangement of these parts determines the global structural
appearance. However, most of the existing meta-descriptors [16],
[22], [23], [24], [25], [26] are based on the global distribution
of pixel features inside a region, and thus the local structure of
the person’s image is lost. In contrast, we describe the global
distribution using the local distribution of the pixel features. As
illustrated in Fig. 1, this enables us to distinguish colors with the
same global distribution but different local structures.

We use the Gaussian distribution as a base component of the
hierarchy. The motivation for the use of this distribution originates
from the importance of the mean color of local parts. Although
hierarchical covariance representations have been proposed [27],
[28], each hierarchy lacks the mean information. The absence of
the mean information is crucial when applied to person re-id. This
is because the clothes a person wears tend to consist of a small
number of colors in each local part, and therefore the mean color
in the local parts tends to be the major information that enables
to distinguish persons. Because the mean color is calculated by
averaging the local part pixel values, it is robust to noise and
represents the global description of the local part. From Fig. 2, we
can also see that the mean color represents the most distinguished
color feature of the person image, but for the mean removed
images, all of these distinguished color features have gone.

We name the proposed meta-descriptors Hierarchical
Gaussian Descriptors (HGDs). Although its concept is simple,
the HGDs introduce a new challenge in handling the SPD matrix
manifold hierarchically. This paper also provides an analysis of
this topic through our attempt to improve the supervised person re-
id. The main contributions of this paper1 are summarized below:
(I) We present effective handcrafted descriptors for person re-id.
The HGDs provide a conceptually simple and consistent way to
generate discriminative features that describe the color and textural
information simultaneously. (II) We propose the hierarchical use
of Gaussian embedding of pixel features (GOG). We experimen-
tally validate the importance of both the hierarchical distribution
and the mean information of pixel features. (III) We define a
scale normalization of an SPD matrix and validate its importance
for HGDs. Based on this normalization, we develop a new zero-
mean Gaussian embedding. The HGDs based on this embedding
can achieve performance close to the HGDs using the original
embedding of Lovrić et al. [29] with smaller dimensionality
and computational cost (ZOZ). (IV) With the aim of normalizing
the norm of HGDs, we point out the biased trend of the SPD
matrices in the Log-Euclidean (LE) tangent space. To alleviate
this effect, we propose norm normalization methods accompanied
with bias removal of the SPD matrix manifold. In the previous
version [30], we validated the effectiveness of this normalization
with the extrinsic statistics of the Riemannian manifold. In this
paper, we extend this normalization with the intrinsic statistics.

1. This paper is a substantially extended version of our paper in the
CVPR2016 proceedings [30]. The HGDs refer to the generic name including
the GOG descriptor proposed in [30] and its simplification ZOZ descriptor.

2 RELATED WORK

Feature representation in person re-id. Several feature rep-
resentations have been sought to obtain invariances against chal-
lenging variations in person appearances. The localization of a
person’s body parts [31] and local feature accumulation exploiting
the symmetry of a person [32] were proposed to enhance the
invariance to pose changes. A color invariant signature [33] and a
color name descriptor [4] were proposed to enhance the invariance
of color under different illumination conditions. Self-similarity
among local covariance matrices was proposed to enhance the
invariances to both illumination and background variations [34].
Rare appearances, which usually remain in different camera views,
e.g., rare-colored coats, are matched by saliency learning [35].
Attribute-based descriptors obtain a lingual description of per-
son images, which are also invariant under the imaging condi-
tions [36]. These invariant features discard much information on
person images, which can vary under different camera views, yet
are helpful to distinguish different persons.

Meanwhile, feature representations for metric learning are typ-
ically rather naı̈ve such that they retain discriminative information
of person appearances, e.g., high-dimensional features composed
of densely sampled color histograms, LBPs, and SIFTs [5], [6],
[7], [10], [11], [12]. Although color histograms are sensitive to
variations in illumination, metric learning learns the variations
under different camera views from training data, and typically
outperforms color normalization [8], [11]. Because the person
images are coarsely aligned in a vertical direction, creating his-
tograms with horizontal strips is a common successful strategy
to enhance the view invariance [3], [4], [13]. Local Maximal
Occurrence (LOMO) [11] extended the local discrimination of
this approach, by utilizing a two-stage representation in which
local histograms of pixel features within local patches are first
constructed, and then maximal histogram bins are taken along the
horizontal strips. Unfortunately, the max-pooling step discards all
of the non-maximal local histogram values along a strip, thereby
losing much of the information of multiple local patches. This
limits the ability to discriminate among different persons who
wear clothes consisting of parts that are visually different.

Lately, the use of Convolutional Neural Networks (CNNs) [37]
has gradually been improving the accuracy of person re-id [38],
[39], [40], [41], [42], [43], [44]. The high performance of CNN
relies on its deep hierarchal architecture with millions of pa-
rameters. It typically requires a considerable number of labeled
training samples and the model is exposed to over-fitting risk when
sufficient training samples are unavailable [13]. Several recent
studies circumvented this issue by transferring knowledge from
large pre-training datasets, e.g., extracting the features of lower
layers from a pre-trained model [13] or conducting fine-tuning on
the target dataset [3], [45]. Nevertheless, deep CNN still requires
an expensive GPU with large memory capacity to store the model
parameters.

In this work, we enhance the discriminative ability of LOMO-
like two-stage representation for supervised person re-id. Enhanc-
ing the representation only with first-order statistics in Euclidean
space is inherently difficult, e.g., simple average pooling on local
histograms coincides with a global histogram. Therefore, we focus
on the hierarchical distribution on the Riemannian manifold. In
contrast to CNN, HGDs require neither training samples nor model
parameters (except for optional norm normalization).
Meta-descriptors of local features. A covariance descriptor sum-
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marizes the local features within a region via second-order statis-
tics [16]. Its advantages are robustness against noise and changes
in pose/illumination. Several studies extended the linear relation
between the feature elements of a covariance matrix to nonlinear
relations [46], [47], [48], [49], e.g., Brownian covariance, which
was used to measure the degree of all kinds of possible relations
between feature elements [49]. Nevertheless, a distinct drawback,
i.e., the absence of the mean information, remains unsolved in
these extensions.

A natural way to endow the covariance descriptor with the
mean information would be an extension to the Gaussian distribu-
tion. The earliest studies [23], [25] measured the distance between
Gaussian descriptors by the metric of an affine transformation
matrix [23] and the α-divergence [50]. Both of these distances
entangle with the parameters of the two Gaussian distributions,
thereby complicating their processing unlike in the Euclidean
space. Recent Gaussian descriptors solved this limitation by using
the metrics on the SPD matrix manifold [22], [26], [51]. Notably,
because of its convenience in the joint presence of the mean vector
and the covariance matrix in one SPD matrix, the embedding
proposed by Lovrić et al. [29] is rising in popularity [52], [53],
[54]. Differently from the above embeddings, Li et al. introduced
the structure of Lie group into the space of Gaussian distributions,
i.e., the geometric structure of the Riemannian manifold and
the algebraic structure of the smooth group [55]. Based on the
isomorphisms of Lie group, they developed two embedding meth-
ods. One method directly embeds the Gaussian distribution into
Euclidean space from a subgroup of upper triangular matrices via
the matrix logarithm. The other method first embeds Lie subgroup
into the space of SPD matrices and then into Euclidean space.
Interestingly, the latter embedding shares a similar SPD matrix to
that of Lovrić et al. [29]. In an application for unsupervised person
re-id, Ma et al. [24] accounted for a slight concern regarding the
sensitivity of the mean color to illumination changes by applying
gray world color normalization as preprocessing of the Gaussian
descriptor.

As hierarchical meta-descriptors, several summarized rep-
resentations on local covariance matrices were proposed. In
L2ECM [27], a vector map was presented, which was obtained by
mapping the local covariance matrices into the LE tangent space.
The covariance matrix on the vectorized covariance matrices
was used for image representation. In another approach [56],
[57], [58], [59], image representation was obtained by employing
coding-based summaries e.g., Bag-of-Words [60], Fisher Vector
(FV) [61], and VLAD [62]. With the help of feature distributions
on the training data, these summaries flexibly describe the distribu-
tions of local features. Unfortunately, the accuracies of the coding-
based summaries are highly dependent on the training data used
for codebook learning. This drawback is not preferable for person
re-id because persons who need to be matched are not necessarily
included in the training dataset. Although L2ECM was extended
into a vector map of local Gaussian distributions [55] concurrently
to our work [30], the coding-based summary on local Gaussian
distributions was still used for image representation.

In contrast to the existing meta-descriptors, HGDs include both
mean and covariance information in each hierarchy and do not
require data-dependent codebook learning.
Metrics for SPD matrix manifold. The Affine Invariant Rie-
mannian Metric (AIRM) [20] and Log-Euclidean Riemannian
Metric (LERM) [21] are well-known metrics for the SPD ma-
trix manifold. AIRM entangles two input matrices for distance

calculation to achieve the invariance to affine transformation. In
general, the tangent space locally approximates the geodesic on
the manifold in the Euclidean space. Tuzel et al. confirmed that
the tangent space on the mean point of the given SPD matrices
minimizes the approximation error of the geodesic distances of
AIRM [63]. Tosato et al. proved that the SPD matrix manifold is a
homogeneous space which means that any tangent pole preserves
the neighborhood relation between the points on the manifold [17].
From a computational point of view, they suggested that the best
choice of the tangent pole is the identity matrix. In fact, this
tangent space is equivalent to that of LERM [21]. Tosato et al. also
showed that detecting the role of curvature by a Campbell-Baker-
Haussdorff expansion improves the Euclidean distance in the LE
tangent space [17]. Except for this work, previous SPD matrix-
based meta-descriptors treated the LE tangent space only as in the
Euclidean space without any concern [22], [26], [27], [51].

Apart from these two Riemannian metrics, recent studies of
embedding CNN features have shown the superiority of Matrix
Power Normalization (MPN) against LERM [64], [65], [66]. Co-
variance matrices that were applied MPN enable a robust covari-
ance estimation [65]; at the same time, MPN corresponds to Power
Euclidean Metric (PoEM) on the Riemannian manifold [67]. Li et
al. proved that PoEM approximates LERM [65] and the distance
of PoEM is also decoupled. Notably, PoEM allows non-negative
eigenvalues for the embedding matrix, whereas LERM requires
strictly positive values. From a computational perspective, the
matrix power operation is more suitable for backpropagation than
the matrix logarithm operation of LERM [65], [66]. We note
that, in this work, strictly positive definite matrices are processed
without involving backpropagation. In such a case, LERM is
known to be a superior Riemannian metric than PoEM [68].

Unfortunately, our analysis reveals LERM can produce largely
biased values in the tangent space, and this property degrades
the hierarchal representation on the Riemannian manifold. To
overcome this problem, we define a matrix scale normalization
and propose bias removal before feature norm normalization.

3 HIERARCHICAL GAUSSIAN DESCRIPTORS

In this section, we propose two Hierarchical Gaussian
Descriptors (HGDs). Both HGDs are based on a common pipeline
that follows two motivations: (I) The hierarchical distribution is
discriminative because it can distinguish colors with a similar
global distribution but a different local distribution of pixel fea-
tures (Fig. 1). (II) When constructing the hierarchal descriptor,
the mean information of pixel features in local parts tends to be
major discriminative information (Fig. 2). We extract two HGDs
named Gaussian Of Gaussians (GOG) and Zero-mean Gaussian
Of Zero-mean Gaussians (ZOZ) descriptors by changing the base
Gaussian embedding of the common pipeline (Fig. 3(a)). Each of
the HGDs provides the features of regions in vector form to enable
conventional metric learning methods to be easily applied.

We outline the common pipeline of HGDs in Fig. 3 (b). The
feature representation of a person image is obtained by adopting
a part-based model, which divides a person image into G regions.
The division of a person image is arbitrary, e.g., the estimation of
human body parts could be used. In this paper, we assume the G
regions are given in advance. As regions, we use fixed horizontal
stripes to enhance the view invariance [11]. For each region, we
characterize each pixel by low-level features such as its color
and gradient. We summarize them in a two-level (patch/region)
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Fig. 3. Hierarchical Gaussian Descriptors (HGDs): (a) The two descriptors we extract by changing the Gaussian embeddings of patch/region levels.
(b) Common pipeline for each descriptor: (i) Densely extract local patches located inside each region. (ii) Describe each of these local patches via a
Gaussian distribution of pixel features which we refer to as a patch Gaussian. (iii) Flatten and vectorize each of the patch Gaussians by considering
their underlying Riemannian geometry. (iv) Summarize the patch Gaussians inside a region into a region Gaussian. (v) Flatten the region Gaussian
and create a feature vector. (vi) Concatenate the feature vectors extracted from all regions into one vector.

hierarchical distribution. In each hierarchy, we summarize the
feature distribution by one of the following two embeddings: the
Lovrić’s Gaussian embedding [29] and the Zero-mean Gaussian
(ZmG) embedding, which we propose in §3.3.

3.1 Pixel Features

Let us focus on one of the G regions of a person image. We
describe the local structure of the region by densely extracting
squared (k × k pixels) patches with p pixel intervals (Fig. 3 (b-i)).
In order to characterize each pixel in the patch, we extract a d-
dimensional feature vector f i for every pixel i. The feature vector
can consist of any type of features, such as the color, intensity,
gradient orientation, and filter response.

Because the number of pixels in each patch is small, the
dimension d is preferable to be low to ensure that the estimation
of the covariance matrices of the patch Gaussians in the next step
is robust. In this work, we extract eight-dimensional pixel features
defined as:

f i = [y,M0◦ ,M90◦ ,M180◦ ,M270◦ , R,G,B]T , (1)

where y is the pixel location in the vertical direction,
Mθ∈{0◦,...,270◦} are the magnitudes of the pixel intensity gradient
along four orientations, and R,G,B are the color channel values.
Each dimension of f i is linearly stretched to the range [0, 1] to
equalize the scales of the different feature values.

The pixel location is introduced to leverage the spatial infor-
mation within each region. Our use of the vertical image location
only originates from the analysis in [24]: the person images tend
to be well aligned in the vertical direction, whereas changes in
the pose/viewpoint cause a large misalignment in the horizontal
direction. Note that it would be preferable to set yi from the top
(or center) of the current region as in [22]. However, each pixel
belongs to multiple regions, and such a setting would increase the
computational complexity. Because person images are coarsely
aligned, we directly set the axis of yi from the top of the image.

The gradient information is introduced to provide the tex-
tural information of clothes. The gradient orientation O =
arctan(Iy/Ix) is calculated from the x- and y-derivatives Ix, Iy
of the intensity I . We quantize the orientation into four bins:
Oθ∈{0◦,90◦,180◦,270◦}. To compensate the loss of information by
the quantization, we use soft voting into two nearby orientation
bins. The voting weights are linearly determined based on the
distances from the quantized orientations. We focus on high
gradient edges by multiplying the gradient magnitude M =

√
I2y + I2y by the quantized orientation Oθ to obtain the oriented

gradient magnitude: Mθ = MOθ .
Color information is the most important clue for person re-

id. We use the color channel values of the most basic color space:
RGB. We extend our pixel features to other color spaces, e.g., Lab,
HSV, and nRGB in §3.5.

3.2 Patch Level Summarization
After extracting the pixel features inside a patch, we summarize
them via the most classical parametric distribution, which has the
mean and covariance as parameters: Gaussian distribution (Fig. 3
(b-ii)). For every patch s, we model the feature vectors as the patch
Gaussian N (f ;µs,Σs) defined as,

N (f ;µs,Σs) =
exp

(
− 1

2 (f − µs)
TΣ−1

s (f − µs)
)

(2π)d/2|Σs|
, (2)

where µs is the mean vector, Σs is the covariance matrix of the
sampled patch s, and | · | is the determinant of the matrix. The
mean vector and the covariance matrix are respectively estimated
by: µs =

1
ns

∑
i∈Ls

f i and Σs =
1

ns−1

∑
i∈Ls

(f i −µs)(f i −
µs)

T , where Ls is the area of the sampled patch s and ns denotes
the number of pixels in Ls.

Note that the densely sampled mean vectors and covari-
ance matrices can be efficiently calculated by using integral
images [63]. Because regions can overlap each other, we construct
the integral images of the pixel features for the entire person image
rather than creating them for each region.

A Gaussian Mixture Model (GMM) might be used for a more
precise description. Because a local patch is expected to consist
of a small number of colors/textures, we assume the unimodal
Gaussian to be sufficient for describing its feature distribution.

Gaussian Embedding (Lovrić)
As explained above, our descriptors are summarized representa-
tions of the patch Gaussians inside a region. This summarization
requires mathematical operations to obtain the mean or covariance
of the Gaussian. From the viewpoint of information geometry, the
space of probability distributions is considered as a Riemannian
manifold to which the Euclidean operation cannot be applied
directly [50]. The space of d×d SPD matrices Sym+

d is a special
type of Riemannian manifold, and LERM [21] provides a solid
approach to map a point on the manifold to the Euclidean tangent
space via a principal matrix logarithm.

To leverage LERM, we embed the patch Gaussians in the SPD
matrix in a manner similar to a previous approach [52]. According
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to an analysis in the information geometry literature [29], the space
of d-dimensional multivariate Gaussians can be embedded into the
space of d + 1-dimensional SPD matrices denoted by Sym+

d+1.
We represent the d-dimensional patch Gaussian N (f ;µs,Σs)
into Sym+

d+1 as P s:

N (f ;µs,Σs) ∼ P s = |Σs|−
1

d+1

[
Σs + µsµ

T
s µs

µT
s 1

]
.

(3)
The covariance matrix of the local patch often becomes singular
due to the lack of a sufficient number of pixels within the patch.
We overcome this problem by adding a d-dimensional identity
matrix Id to Σs with a small positive constant value ϵs: Σs ←
Σs + ϵsId.

In order to describe the region distribution in a Euclidean
operation, we map each of the patch Gaussians P s into a tangent
space via a principal matrix logarithm (Fig. 3 (b-iii)). Note that
different Gaussian embeddings [55] could be used as alternatives
of the embedding above.

We then store the upper triangular (or equivalent lower trian-
gular) part of the mapped matrix as a vector because the matrix
is symmetric. By considering the off-diagonal entries as being
counted twice during the norm computation [63], the matrix of the
patch Gaussian P s becomes an m = 1

2 (d+1)(d+2) dimensional
vector gs, defined as,

gs = vec(logP s) = [diag(logP s)
T
√
2offdiag(logP s)

T ]T ,
(4)

where diag(·) and offdiag(·) respectively represent the operator
to reshape the diagonal elements and the upper-triangular (half)
off-diagonal elements of a symmetric matrix into a vector form.

3.3 Alternative Summarization
Because the dimensionality of the patch Gaussian vector grows
quadratically w.r.t. the size of the row or column of the SPD
matrix, a hierarchical use of this embedding drastically increases
the dimensionality. It is desirable to retain the size of the SPD
matrix as small as possible, even as small as one dimension.
Thus, we develop an alternative embedding method. We assume
a Gaussian distribution of which mean vector is fixed to the zero
vector i.e., µs = 0 = (0, . . . , 0)T . The Zero-mean Gaussian
(ZmG) distribution N (f ;0,Σs) is given by,

N (f ;0,Ξs) =
exp

(
− 1

2f
TΞ−1

s f
)

(2π)d/2|Ξs|
, (5)

where the covariance matrix is estimated by Ξs =
1

ns−1

∑
i∈Ls

f if
T
i . Note that the covariance matrix Ξs coincides

with the raw (non-central) moment [51] and is often referred to as
the autocorrelation matrix [69]. Summarizing local features with
Ξs is empirically known as an effective embedding method [22],
[51]. Here, we view it from a connection to a Gaussian distribu-
tion.

The autocorrelation matrix naturally holds the mean informa-
tion of the pixel features and almost coincides with the upper-left
block of the Gaussian matrix in Eq.(3)2. Namely,

Ξs =
1

ns − 1

∑
i∈Ls

f if
T
i = Σs +

ns

ns − 1
µsµ

T
s . (6)

2. In the LE tangent space, this block no longer coincides with logΞs

because µs in the last row or column in Eq.(3) affects the result of the principal
matrix logarithm.

Although the ZmG distribution also includes the mean information
of features in its covariance matrix, it restricts the center of
distribution to the origin of the feature space. Thus, ZmG models
a broader area of the feature space. Consequently, even though an
embedding based on ZmG can be expected to be less discrimina-
tive than the Gaussian embedding, it could be considered to be
more robust to changes in the feature vectors.

Zero-mean Gaussian Embedding (ZmG)
Using the same Gaussian embedding, we can represent
N (f ;0,Ξs) into Sym+

d+1 as D′
s:

N (f ;0,Ξs) ∼D′
s = |Ξs|−

1
d+1

[
Ξs 0
0T 1

]
. (7)

The autocorrelation matrix can be regularized as Ξs ← Ξs+ϵsId

to ensure that the matrix is an SPD matrix.
The eigendecomposition of the diagonal block matrix and the

definition of the principal matrix logarithm are used to derive the
matrix values on the LE tangent space as follows:

logD′
s =

 logΞs − Tr(logΞs)
d+1 Id 0

0T −Tr(logΞs)
d+1

 . (8)

A 1
2d(d + 1) + 1-dimensional patch Gaussian vector may be

obtained by taking only the independent elements.
Because we assumed that the mean vectors of the Gaussian are

zero, as is commonly the case, another natural choice to embed a
ZmG distribution into an SPD matrix is to use the autocorrelation
matrix Ξs directly as in the 2AvgP [22]. However, as we verify
in §4.1, the scaling of the SPD matrix is important for HGDs.
Based on the analogy to Gaussian embedding, which adopts scale
normalization3, we propose to represent the d-dimensional patch
Gaussian N (f ;0,Ξs) into Sym+

d as the following Ds:

N (f ;0s,Ξs) ∼Ds = |Ξs|−
1
dΞs. (9)

Similarly to the case of the Gaussian matrix, we apply the principal
matrix logarithm and half-vectorization to the matrix Ds and
obtain an m′ = 1

2d(d+1)-dimensional vector g′
s = vec(logDs).

The embeddings D′
s and Ds, which are similar except for an

additional dimension, were found to perform similarly. Because
the size is more compact, we use Ds as the ZmG embedding.

3.4 Region Level Summarization

As a result of the pose variation in person images, the positions
of local parts vary in different observations. This leads us to
summarize the local patches into an orderless representation. More
specifically, we summarize the flattened patch Gaussians in the
previous subsections into a region distribution (Fig.3 (b-iv)). For
this summarization, we also use a Gaussian distribution that not
only has the ability to describe the covariance but also the mean.

The use of a Gaussian distribution for summarization entails
considering the spatial property of patches as follows. A person
image often contains background regions that significantly differ
in places. We therefore suppress the effect of background regions
by introducing a weight for each patch in a manner similar to that
of weighted color histograms [32]. In most cases, the person is
centered in each image; thus, a higher value is assigned to the

3. There is an equivalence of the determinant |Gs| = |Σs| where

Gs =

[
Σs + µsµ

T
s µs

µT
s 1

]
is a non-scaled Gaussian matrix excluding

the scaling term of Eq. (3). The proof is given in Appendix A.
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patches that are closer to the center of the y-axis of an image:
ws = exp(−(xs−xc)

2/2σ2), where xc = W/2 and σ = W/4.
Here, xs denotes the x-coordinate of the center pixel of patch s
and W is the image width. Then we define the weighted mean
vector and covariance matrix as

µG =
1∑

s∈G ws

∑
s∈G

wsgs, (10)

ΣG =
1∑

s∈G ws

∑
s∈G

ws(gs − µG)(gs − µG)T , (11)

where G is the region in which the patch Gaussians are summa-
rized. Similarly, the weighted autocorrelation matrix is defined by

ΞG =
1∑

s∈G ws

∑
s∈G

wsg
′
sg

′T
s . (12)

Here, we regularize the covariance and autocorrelation matrices
ΣG and ΞG with the parameter ϵG , e.g., ΣG ← ΣG + ϵGIm. Us-
ing the mean vector and covariance matrix, we represent the region
as the region Gaussian N (g;µG ,ΣG) or ZmG N (g′;0,ΞG).

In terms of matching among region descriptors, the region
Gaussian is conveniently mapped into Euclidean space on which
most of the matching methods such as metric learning are de-
signed. For this purpose, we embed an {m,m′}-dimensional
region Gaussian into SPD matrices in the same manner as in Eq.(3)
or Eq.(9): N (g;µG ,ΣG) ∼ Q ∈ Sym+

m+1 or N (g′;0,ΞG) ∼
R ∈ Sym+

m′ , respectively. We then map {Q, R} into LE tangent
space and half-vectorize it to form an r-dimensional feature vector
z, where r = { 12 (m + 1)(m + 2), 1

2m
′(m′ + 1)}, respectively,

for {Q, R} (Fig.3 (b-v)).
By extracting the region Gaussian for each of the G regions,

we obtain feature vectors {zg}Gg=1. In order to maintain the spatial
location of these vectors, we concatenate them. A person image is
represented by a feature vector z = [zT

1 , . . . , z
T
G]

T (Fig.3(b-vi)).

3.5 Parameter and Dimension
We specify the parameters we empirically tuned for person re-id.
First, we resize each input image to 128×48 pixels to facilitate
evaluation with the common parameters. We then set the height of
each horizontal strip as one-quarter of the image height, i.e., the
size of a strip is 32×48 pixels. We slide the strip in a vertical
direction such that half of each strip overlaps with another strip
from the top of the image until any pixel in the strip exceeds the
scope of the input image. In this way, we obtain seven overlapping
horizontal strips (regions with G = 7). We extract local patches
at two-pixel intervals (p = 2) in each region by considering the
trade-off between the computational time and predictive accuracy.
In addition, we set the local patch size to 7 × 7 pixels (k =
7). Finally, we set the regularization parameters of patch/region
Gaussians as (ϵ, ϵG) = (10−4, 10−2).　

It has been proven that descriptors extracted from different
color spaces are complementary to each other [4]. We extract GOG
or ZOZ by replacing the RGB color space in the pixel feature
in Eq.(1) with three alternative color spaces {Lab, HSV, nRGB}
and concatenate them. Here, nRGB is the normalized color space
(e.g., nR = R/(R+G+B)). Because this space includes redundancy,
we only use {nR, nG}. Thus, the dimensions of the nRnG color
space are (d,m, r) = (7, 36, 703) for GOG and (d,m′, r′) =
(7, 28, 403) for ZOZ, whereas the dimensions of each {RGB,
Lab, HSV} color space are (d,m, r) = (8, 45, 1081) for GOG
and (d,m′, r′) = (8, 36, 666) for ZOZ. The dimensions of the

fusion descriptor of each {GOG, ZOZ} is the sum of G (regions)
× {r, r′} (dim.) in the four color spaces. Because we use seven
regions (G = 7), the dimensions of GOG and ZOZ become 27,626
and 16,828, respectively.

4 NORMALIZATION OF HGDS

HGDs are the hierarchal representations in the LE tangent space,
which corresponds to the tangent space of the identity matrix. In
this section, we explain two types of normalizations to enhance the
representation of HGDs based on the properties of this space: (I)
We explain that the scale normalization of the SPD matrix adopted
in the Gaussian and ZmG embeddings alleviates the biased di-
agonal elements within each of a patch/region Gaussian matrix.
(II) We propose the bias removal before norm normalization to
alleviate the largely biased elements among the region Gaussians
of different images in the LE tangent space.

4.1 Matrix Scale Normalization

In the empirical observation, we found that the diagonal elements
of a symmetric matrix tend to be biased in the LE tangent space
(§5.3). Such a property introduces a bias in the flattened vectors
on both the patch/region Gaussians. Notably, the bias in the
patch Gaussians is undesirable because HGDs correspond to their
summarized representation. In this section, we explain that the
scale normalization of the SPD matrix adopted in the Gaussian and
ZmG embeddings alleviates the biased diagonal elements within
the patch/region Gaussian matrices.

Let X ∈ Sym+
e be a general SPD matrix including the

non-scaled patch/region Gaussian matrices {G,Ξ,GG ,ΞG} and
e be the column (row) size of X . Let X = UDiag(λi)U

T

be its eigendecomposition where Diag(λi) is a diagonal matrix
formed from the eigenvalues λ1, . . . , λe and U ∈ Re×e is the
eigenvectors. The principal matrix logarithm of X is defined as:

logX = UDiag (lnλi)U
T . (13)

In LERM, the principal matrix logarithm in Eq.(13) corresponds
to the tangent space mapping. The scale normalization of HGDs
is related to the following property of LERM.

Property (Logarithmic linearity). LERM inherits the logarith-
mic linearity of the scalar space as follows.

log(aX) = logX + ln(a)Ie. (14)

Here a ∈ R1 is an arbitrary scalar value that satisfies a > 0.

Proof. We can confirm that log(aX) = UDiag(ln(aλi))U
T =

UDiag(ln(λi) + ln(a))UT = log(X) + ln(a)UUT =
log(X) + ln(a)Ie.

Based on this property, the scale normalization defined below
(which is adopted in the Gaussian embedding in Eq.(3) and ZmG
embedding in Eq.(9)) adjusts the diagonal elements in the LE
tangent space.

Matrix Scale Normalization (MSN)
Given an SPD matrix X∈ Sym+

e , the matrix scale normalization
η : Sym+

e → Sym+
e is defined as follows:

η(X) = |X|− 1
eX. (15)

Because |X|− 1
e =

(∏e
j=1 λj

)− 1
e

, we see
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logη(X) = UDiag

(
ln

((∏e
j=1λj

)− 1
e
λi

))
UT

= UDiag (lnλi)U
T + ln

((∏e
j=1λj

)− 1
e

)
UUT

= logX −
(
1

e

∑e
j=1 lnλj

)
Ie. (16)

In this way, η(·) adjusts the diagonal elements of logX .
Note that the MSN changes the eigenspectrum of X as λi ←

λi/(
∏e

j=1 λj)
1
e , i = 1, . . . , e. When the dimensionality e is high,

many eigenvalues could be small e.g., less than 1. In such a case,
it can cause division by zero because the denominator becomes
too small due to repeated multiplication by small eigenvalues. We
avoid this problem by directly calculating the matrix values in the
LE tangent space by the last equation of Eq.(16).

4.2 Norm and Power Normalizations

Norm normalization is important to equalize the ranges of the fea-
ture vectors and control the distance measure between them [70].
The research work on FV representations [61] pointed out that the
norm normalization can help to improve the recognition accuracies
for any of the high-dimensional features.

Because the HGDs are high dimensional, we normalize the
descriptor by using the L2 norm normalization, which is the most
widely adopted form of normalization.

The feature vectors in the LE tangent space can be largely
biased because the origin of this space is the identity matrix. We
assume that the SPD matrix has a common structure, e.g., the last
row or column in the Gaussian matrix is the mean vector in the
Gaussian embedding. In such a case, the embedded SPD matrices
will be similar apart from the identity matrix. As a result, the
cosine distance, i.e., the Euclidean distance on the L2 normalized
features, would be dominated by the bias and therefore decreases
the discriminative ability.

As a remedy to these biased values, we investigate two types
of statistics on the SPD matrix manifold to remove the bias before
performing L2 norm normalization. For the fusion descriptor, we
normalize each of the HGDs extracted on the four color spaces
before concatenating them.

L2 Norm Normalization with Extrinsic Statistics (E-L2/E∗-L2)
In the first normalization, we simply remove the biased compo-

nent directly in the LE tangent space, of which calculation has
a small computational cost (Fig. 4 (a)). The E-L2 normalization
becomes the following:

ẑ = (z − z) /∥z − z∥2, (17)

where z is the sample mean of the GOG or ZOZ acquired from
the training samples.

A similar normalization was proposed for the Bag-of-Words
representation to reflect co-missing words for cosine similar-
ity [71]. In contrast, we employ the normalization to remedy the
effect of the bias in the LE tangent space.

As a variant of the E-L2 normalization, we conduct further
tests to adjust dimensions with broad and narrow ranges. Let σi

be the standard deviation of the i-th dimension of z in training
samples. We remove the sample mean and scale all dimensions to
have the unit standard deviation as z∗i = zi−z̄i

σi
. Subsequently, we

normalize the L2 norm of normalization of z∗. We refer to this
normalization as E∗-L2.

mI

0
z

(a) Extrinsic bias removal

+
mSymTI

+
mSym

0

M

�

mI

0

2

1

2

1
�� −−

AMM

(b) Intrinsic bias removal

+
mSymTI

+
mSymTM+

mSym +
mSym

Fig. 4. Two counter-bias methods applied before feature norm nor-
malization. (a) Extrinsic and (b) Intrinsic bias removals. Note that the
sample points here are the region Gaussian matrices of different training
images.

L2 Norm Normalization with Intrinsic Statistics (I-L2)
In the second normalization, we consider the intrinsic statistics
of the Riemannian manifold [20]. Here, we use the region Gaus-
sian/ZmG matrices before vectorization. If all matrices are similar
apart from the identity matrix, the vector on the tangent space will
be biased. A natural choice to remove this bias is to use the tangent
space of the mean point of training matrices.

Let A be one of the region Gaussian/ZmG matrices {Q,R}
and m be the column (row) size of A. Given NT training SPD
matrices {Ai ∈ Sym+

m}
NT
i=1, the Riemannian center of mass M

is the point on Sym+
m that minimizes the sum of the squares of

the Riemannian distance:

M̂ = arg min
M∈Sym+

m

NT∑
i=1

D2
geo (Ai,M) , (18)

where Dgeo(A,M) is the geodesic distance between M and A.
We use the AIRM distance. The optimization procedure of Eq.(18)
is found in Ref. [20].

We map the SPD matrix A into the tangent space of the mean
matrix M . By taking the orthogonal coordinates on the tangent
space, the half vectorized representation is given by [20]:

z′ = vec
(
log

(
M− 1

2AM− 1
2

))
. (19)

Note that the matrix M− 1
2 is full rank because M is an SPD

matrix and thus the transformed matrix M− 1
2AM− 1

2 is also
an SPD matrix. Therefore, we can interpret the space of z′ as
being the LE tangent space of transformed matrices (Fig.4(b)).
Consequently, under the LERM, we can interpret the Euclidean
distance on the tangent space of the pole as being the geodesic of
the transformed matrices.

We independently estimate the Riemannian mean for each
region of the horizontal strips. We map the region Gaussian
matrices to the tangent space of each region and apply half-
vectorization. Because the mean vector on the training data is zero
in the tangent space, we directly normalize the L2 norm of z′.

Power Normalization (PN)
Applying an element-wise Power Normalization (PN) before con-
ducting L2 norm normalization often improves performance [61].
We thus further test the PN for the normalization of HGDs. PN
enlarges the small magunitudes and reduces large magnitudes in
the elements by taking the signed power of each element z in z
as: z ← sign(z)|z|ρ with 0 < ρ ≤ 1. Following the previous
work [61], we set the power value as ρ = 0.5.

To combine with the bias removal methods, we apply PN for
each of the bias removed vectors, i.e., {z− z̄, z∗, z′} respectively
for { E-L2, E*-L2, I-L2 }. Subsequently, we normalize their L2
norm.
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5 EXPERIMENTS

5.1 Datasets and evaluation protocol
We use five benchmark datasets to evaluate our method:
VIPeR [72], GRID [73], CUHK01 [9], CUHK03 [38], and
Market-1501 [74]. Example images of each of these datasets are
shown in Fig. 5. All of these datasets are challenging because
the images contain large variations regarding their viewpoints,
pose, illumination, occlusion, and background clutter. We evaluate
the performance by using the Cumulative Matching Characteristic
(CMC) curves, which visualizes an expectation of finding the
correct person in the top r matches [72]. As a measure to evaluate
the entire CMC curves, we report the Proportion of Uncertainty
Removed (PUR), which represents the uncertain reduction by a
given algorithm from the random ranking [10]. For the Market-
1501 dataset, we report the mean Average Precision (mAP), which
considers both the precision and recall of the retrieval process [74]
because the gallery contains multiple images of one person.

The VIPeR dataset contains 1,264 images of 632 persons
captured in disjoint camera views. The GRID dataset contains
1,275 images with 250 annotated persons and an additional 775
gallery images of persons except those included as annotated
persons. Both the VIPeR and GRID datasets contain one image
of each person with one camera view. Thus, we evaluate the
performance with single-shot matching. We report an average of
10 random training/test splits, in which each split image only
contains one-half of the people. The CUHK01 dataset contains
3,884 images of 971 persons. There are two images of each person
in each camera view. Thus, we carry out the evaluation with multi-
shot matching, in which we calculate the distances between two
persons by averaging the corresponding cross-view image pairs.
We report the average of 10 random 485/486 person splits for the
training/test sets. The CUHK03 dataset contains 13,164 images of
1,360 persons with an average of 4.8 images of each person in
each view. We use the images that are automatically detected by
the person detector and evaluate the performance with multi-shot
matching. We report the average result of 20 random 1,260/100
person splits for the training/test sets. The Market-1501 dataset
contains 32,668 bounding boxes of 1,501 persons. Each person
is captured by six cameras at most and two cameras at least.
During testing, for each person, one query image in each camera is
selected. We use a fixed 750/751 person split for the training/test
set and report the results of the single-query evaluation on 3,386
query images.

We evaluate the proposed descriptors by learning three dis-
tance metrics: the Keep It Simple and Straightforward MEt-
ric (KISSME) [5], Cross-view Quadratic Discriminant Analysis
(XQDA) [11], and Null Foley-Sammon Transform (NFST) [12].
KISSME learns a Mahalanobis-like distance by a likelihood ratio
test of similar or dissimilar pairs. For KISSME, we first project
feature vectors in the PCA subspace where 98% of the energy is
maintained. XQDA learns a discriminative subspace and a distance
metric simultaneously and can select the optimal dimensionality
automatically. NFST seeks intersection space of the null space
of within-class distances, and non-zero between-class distances, it
is also free to select the subspace dimensionality. For NFST, we
use the RBF kernel of which bandwidth is equivalent to the mean
pairwise distances of the training samples.

5.2 Evaluation of the hierarchical Gaussian embedding
We evaluate the following aspects of HGDs: (1) Embedding
methods; (2) Regularization parameters; (3) Patch/region sizes.

(a) VIPeR (b) GRID (c) CUHK01 (d) CUHK03 (e) Market-1501 

Fig. 5. Example images from the person re-id datasets. For each
dataset, images in the same column represent the same person.

 17.4
 16.9

 24.7
 19.3
 20.2
 20.8

 28.3
 31.1
 31.7

 36.4
 43.5

 44.8

 47.0
 48.4
 49.9
 52.6

 62.0
 62.7

Fig. 6. Feature embedding analysis on the VIPeR dataset. All methods
use the E-L2 normalization without MSN and PN. The figures on the
CMC curves indicate the rank-1 rates.

Impact of embedding methods. We compare different embed-
ding methods for feature summarization including both global and
hierarchical methods. For the global distribution embeddings of
pixel features inside each region, we carry out a comparison with
the mean vector (Mean), covariance matrices (Cov and Cov+1

4),
Zero-mean Gaussian (ZmG), and Gaussian (Gauss). We ensure a
fair comparison by commonly adopting the weighted embedding
for all descriptors, defined as follows:

• Mean: µ′ = 1∑
i∈G wi

∑
i∈G wif i,

• Cov: Σ′ = 1∑
i∈G wi

∑
i∈G wi(f i − µ′)(f i − µ′)T ,

• ZmG: Ξ′ = 1∑
i∈G wi

∑
i∈G wif if

T
i ,

• Cov+1: Σ′
+1 =

[
Σ′ 0
0T 1

]
,

• Gauss: G′ =

[
Σ′ + µ′µ′T µ′

µ′T 1

]
.

Here the pixel weight wi is determined in the same manner as ws.
For two-level embeddings, we compare the performance with

two descriptors referred to as Covariance-Of-Covariances (COC
and COC+1) in which the Cov and Cov+1 embeddings, respec-
tively, are used in both patch and region-level embeddings. As in
the HGDs, we use the patch weight for region-level summariza-
tion.

We apply LERM for all descriptors except Mean. In the
same manner, as for the HGDs, we regularize the covari-
ance/autocorrelation matrices and concatenate the feature vectors
of seven regions. Fig. 6 shows the results on the VIPeR dataset.
In this comparison, we apply the E-L2 normalization without
MSN and PN. In addition to the XQDA distance metric, the
figures show the performance with the Euclidean distance to
determine the fundamental property of each embedding. For the
sake of generality, we evaluate the performances using different
normalization methods proposed in §4. Table 1 lists the results on
the five datasets evaluated with XQDA and NFST metrics5.

4. Cov+1 and COC+1, respectively, correspond to the mean removed
version of Gauss and GOG, e.g., Cov+1 is the case of µ’ = 0 in Gauss.

5. We omitted the results of KISSME because it showed similar trends to
XQDA. Although NFST outperformed XQDA on LOMO features [12], our
evaluation on HGDs showed different trends depending on the datasets.
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TABLE 1
The impact of the hierarchical Gaussian embedding evaluated with MSN

VIPeR (PUR) GRID (PUR) CUHK01 (PUR) CUHK03 (PUR) Market-1501 (mAP)
Norm Methods Hie. Mean w/o PN w/ PN w/o PN w/ PN w/o PN w/ PN w/o PN w/ PN w/o PN w/ PN

XQDA NFST XQDA NFST XQDA NFST XQDA NFST XQDA NFST XQDA NFST XQDA NFST XQDA NFST XQDA NFST XQDA NFST

E-L2

Mean ✓ 36.4 28.7 31.9 26.4 24.6 23.5 21.2 24.0 37.1 9.2 36.1 8.0 33.2 1.9 33.3 1.4 9.7 4.9 8.6 3.4
Cov 45.7 50.4 43.2 52.9 31.7 38.4 33.9 39.4 58.5 50.8 61.3 60.7 54.8 24.4 60.2 42.5 25.9 22.3 27.4 26.2
COC ✓ 54.7 54.3 53.5 52.5 37.1 33.5 36.3 33.6 65.6 70.2 70.5 72.9 80.3 79.2 82.6 81.3 35.3 37.4 36.0 36.1
ZmG ✓ 49.5 52.3 45.1 52.9 34.1 41.3 35.6 41.7 61.8 53.9 64.2 62.9 58.0 23.8 63.1 39.7 26.4 22.5 27.9 26.1
ZOZ ✓ ✓ 62.8 62.7 61.0 60.2 47.0 44.3 44.9 42.1 76.1 78.9 78.7 80.3 81.3 80.1 83.2 82.9 40.8 44.0 41.7 43.4

Cov+1 44.8 51.1 43.7 54.4 30.9 36.5 32.8 37.8 58.3 49.8 61.8 61.8 56.5 23.7 62.9 43.9 26.0 21.7 27.9 26.9
COC+1 ✓ 50.1 51.1 50.0 49.7 38.4 35.4 36.4 34.1 68.6 72.9 71.6 73.0 76.8 78.1 80.3 81.3 32.6 35.2 32.8 33.5
Gauss ✓ 50.6 53.4 49.6 55.5 34.0 40.8 36.0 41.1 61.9 53.8 65.4 63.8 58.1 25.7 63.1 41.5 27.6 24.7 29.7 28.8
GOG ✓ ✓ 63.6 62.6 62.1 60.4 46.0 43.0 44.7 41.5 76.5 78.3 79.5 79.8 81.9 81.3 84.4 83.5 41.4 44.3 43.0 44.5

E∗-L2

Mean ✓ 33.3 22.0 30.6 20.8 26.6 24.9 22.2 23.5 37.8 8.8 36.7 7.2 32.4 1.3 33.3 1.0 9.2 2.8 8.1 2.0
Cov 41.5 50.7 40.1 50.6 29.5 35.7 31.4 36.7 63.5 64.9 62.1 64.8 60.3 44.3 62.4 50.6 28.4 26.5 27.8 26.4
COC ✓ 48.8 48.7 48.7 48.5 33.3 31.3 33.6 32.0 70.4 72.4 70.7 72.8 81.7 78.4 82.8 79.8 34.7 33.4 34.2 32.4
ZmG ✓ 42.7 50.6 41.2 50.0 30.8 38.3 32.8 38.6 65.2 66.2 64.2 66.3 62.0 40.1 64.2 46.3 28.4 25.6 28.4 26.1
ZOZ ✓ ✓ 56.5 56.1 56.6 55.8 41.0 38.4 41.0 39.2 78.5 80.0 78.7 79.9 82.5 82.1 83.4 83.0 40.2 40.8 40.2 40.2

Cov+1 41.6 52.7 40.3 52.2 30.1 36.6 30.5 37.1 64.3 67.2 63.2 66.9 62.6 49.4 64.7 54.6 29.6 28.2 28.6 27.5
COC+1 ✓ 44.0 44.6 44.3 44.9 32.9 31.6 33.4 31.6 70.4 71.6 70.2 71.3 80.4 77.1 81.0 79.0 31.1 30.1 30.5 29.1
Gauss ✓ 45.1 53.1 44.9 53.3 31.5 38.1 33.1 38.3 66.1 67.0 65.8 67.5 62.2 42.2 64.5 48.5 30.2 28.2 30.3 29.0
GOG ✓ ✓ 58.2 56.7 57.9 56.2 41.6 38.2 41.4 38.7 79.3 79.3 79.4 79.4 83.9 82.4 84.6 83.3 41.8 41.4 41.7 41.5

I-L2

Mean ✓ - - - - - - - - - - - - - - - - - - - -
Cov 46.5 51.6 43.6 53.5 32.6 39.0 34.5 39.7 59.4 52.5 59.4 52.5 56.0 26.9 60.6 43.4 26.7 23.5 28.0 26.8
COC ✓ 53.1 53.2 53.0 52.0 37.2 33.9 36.9 33.7 67.7 71.7 67.7 71.7 81.2 80.2 83.1 81.8 36.0 38.2 36.2 36.5
ZmG ✓ 51.0 53.4 46.7 53.1 34.2 41.4 35.7 41.1 61.6 54.6 61.6 54.6 59.5 26.8 62.8 39.2 27.3 24.1 27.9 25.8
ZOZ ✓ ✓ 63.9 63.5 62.0 61.1 48.2 45.9 46.3 43.7 78.0 80.4 79.9 81.8 81.3 81.6 83.6 84.2 41.8 45.6 42.7 45.4

Cov+1 45.4 52.8 43.8 55.1 31.5 37.5 33.8 38.2 59.4 53.0 59.4 53.0 58.1 28.2 63.7 47.0 27.0 23.4 28.4 27.7
COC+1 ✓ 52.8 53.1 50.4 50.6 38.5 35.5 37.1 34.6 69.7 73.6 69.7 73.6 77.5 78.8 80.6 81.7 33.0 35.8 33.1 34.0
Gauss ✓ 52.2 54.8 49.6 55.2 34.8 41.4 35.1 40.7 62.4 55.1 62.4 55.1 60.5 28.9 63.7 41.0 28.9 26.2 29.9 28.5
GOG ✓ ✓ 65.0 64.2 63.6 62.1 48.4 45.0 46.9 43.8 79.1 80.2 81.1 81.4 82.8 82.6 84.5 84.9 43.7 47.8 45.1 48.2

The mark ✓indicates methods that contain hierarchy/mean information. The red/blue scores show the first/second best scores in each normalization.

The results indicate that: (1) The performance trend is similar
among the Euclidean distance and the two metrics: hierarchical
and Gaussian embeddings (GOG and ZOZ) perform the best.
These results indicate that these embedding methods are compara-
tively discriminative and robust. (2) The hierarchical embeddings
perform more effectively than global embeddings in the same base
embedding, e.g., COC outperforms Cov. These results confirm
one of our motivations, i.e., hierarchical distributions are more
discriminative than global distributions. (3) Gaussian embeddings
perform more effectively than covariance embeddings. Among the
global embeddings, ZmG and Gauss outperform Cov and Mean.
In addition, among the hierarchical embeddings, ZOZ and GOG
outperform COC and COC+1. These results confirm another moti-
vation, i.e., the importance of using both the mean and covariance
information. (4) The performance of ZmG and ZOZ is close to that
of Gauss and GOG, respectively, especially on the E-L2 and E∗-
L2 normalizations. These results confirm that ZmG approximates
the Gaussians distribution well. In several cases on the GRID and
CUHK01 datasets, ZOZ outperforms GOG. These results may
be because severe changes of mean information are included in
these datasets. Compared with ZmG, the Gaussian embedding
has additional independent dimensions of the mean vector; thus,
Gauss can be more discriminative combined with metric learning,
whereas the influence of the mean information is more substantial
than ZmG. (5) The I-L2 normalization tends to improve the
performance of GOG more than ZOZ. This could probably be
attributed to the fact that the bilinear transformation in the I-L2
normalization adjusts the different feature magnitudes among the
mean and other components in the Gaussian embedding.

Effect of regularization parameters. We examine the sensi-
tivity of performance w.r.t. the regularization parameters (ϵ, ϵG)
of the covariance matrices. In this analysis, we use the GOG
descriptor normalized by the E-L2 normalization without PN,
and evaluate the performance with the XQDA distance metric.
Fig. 7 (a) shows the PUR of GOG on the VIPeR dataset in
cases without and with applying MSN in the parameter ranges
ϵ ∈ {10−8, 10−7, . . . , 10−2} and ϵG ∈ {10−4, 10−3, . . . , 100}.
Fig. 7 (b) shows the eigenvalue distribution of covariance matrices.

Overly large ϵ covers the characteristics of eigenvalues of
each patch/regions. Conversely, with overly small ϵ, the descrip-
tors become sensitive to the difference of small eigenvalues,

(a) PUR (%) [left: w/o MSN, right: w/ MSN] (b) Eigenvalues
Fig. 7. Analysis of regularization parameters: (a) PUR scores of the
GOG descriptor in cases without/with applying MSN. (b) Eigenvalue
distribution of patch/region covariance matrices (w/o MSN). To show a
typical example, we used patch Gaussian matrices of ϵ = 10−4 for ΣG .

Fig. 8. Analysis of patch/region sizes on the VIPeR dataset.

because the logarithmic function magnifies small eigenvalues
less than 1. We see that the best parameters are located around
(ϵ, ϵG) = (10−5 − 10−4, 10−1 − 10−2) and these are near the
center of eigenvalue distribution. Based on these analyses, we set
the parameters (ϵ, ϵG) = (10−4, 10−2).
Effect of patch/region sizes. We examine the sensitivity of
performance w.r.t. the number of regions G and patch size k. We
use the GOG descriptor normalized by the E-L2 normalization
without MSN and PN. We test the regions with the number
G ∈ {1, 3, 5, 7, 9, 11} in which the heights of horizontal strips
are set as { 11 ,

1
2 ,

1
3 ,

1
4 ,

1
5 ,

1
6}, respectively of the image height, and

half of each strip overlaps with another strip. The patch size varies
in the range k ∈ {1, 3, 5, 7, 9, 11}. Fig. 8 shows the results on the
VIPeR dataset evaluated with the XQDA metric.

The results indicate that: (1) The performance increases as the
number of regions G increases. These results are probably due to
the fact that the person is relatively well aligned in a horizontal
direction; thus, more detailed information along the height can
increase the discriminative ability of different persons. At the same
time, a large number of G increases the dimensionality of HGDs
and the performances saturate at approximately G = 7. (2) The
performances with patch sizes k > 5 are higher than k = 3. At
the same time, the performance slightly decreases in k = 9, 11
for several settings of G. By considering the above results, we set
the parameters (G, k) = (7, 7).
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Fig. 9. Visualization of patch Gaussian matrices extracted from randomly
sampled patches on the VIPeR dataset: (a) Image patches (7×7 pixels).
(b) Patch Gaussian matrices (9×9 dims). (c)/(d) After obtaining the
principal matrix logarithm of (b) without/with applying MSN.

(a) Patch Gaussian (b) Region Gaussian

Fig. 10. Histogram of decomposed logarithmic eigenvalues (α and β) on
the VIPeR dataset: (a)/(b) Non-scaled patch/region Gaussian matrices.
In (b), (α∗, β∗)/(α, β) represent the values in the case without/with
applying MSN to the patch Gaussians. The relation |α| ≫ |β| implies
that a large diagonal bias occurs in the matrix.

5.3 Evaulation of Normalizations
We evaluate the proposed normalizations in terms of the following
aspects: (1) MSN; (2) PN and norm normalizations.
Analysis of MSN. We show how MSN improves the represen-
tations of HGDs. Empirical observation showed that LE tangent
space mapping causes bias in the diagonal elements of the sym-
metric matrix. Fig. 9 illustrates this effect on the patch Gaussian
matrices. In these figures, we randomly sampled image patches on
the VIPeR dataset (Fig. 9 (a)) and extracted their non-scaled patch
Gaussian matrices Gs with the pixel features in Eq.(1) (Fig. 9 (b)).
Fig. 9 (c) and (d), respectively, show the patch Gaussian matrices
in the LE tangent space with and without applying MSN (Note that
P s = η(Gs)). We see that the diagonal elements of the matrices
commonly have large negative values in the LE tangent space in
Fig. 9 (c) and MSN alleviates them as shown in Fig. 9 (d).

We explain the cause of the biased diagonal elements. Let
X ∈ Sym+

e be a general SPD matrix including the patch/region
Gaussian matrices and (lnλ1, . . . , lnλe) be the logarithm of its
eigenvalues. Let us decompose logX using the mean eignenvalue
α = 1

e (
∑e

j=1 lnλj) and the residual (β1, . . . , βe) as follows:

logX = UDiag(βi + α)UT

= UDiag(βi)U
T + αUUT = logX̂ + αIe. (20)

This decomposition implies that if the magnitude of the mean
value is larger than the residual, i.e., |α| ≫ |βj |, j = 1, . . . , e,
then the diagonal elements of logX are expected to have larger
magnitudes than the off-diagonal elements. This situation often
occurs in HGDs because local patches/regions consist of fewer
pixels/patches. Thus, only a few eigenvalues of an SPD matrix are
expected to be large, whereas most of the remaining values are
very small. Fig. 10 (a) and (b), respectively, show the histograms
of the decomposed logarithmic eigenvalues of patch and region
Gaussians on all images of the VIPeR dataset6. We see that α
tends to be much smaller than β in both patch/region Gaussians.
These trends are common in both GOG and ZOZ.

HGDs construct the Gaussian/autocorrelation matrix upon
the patch Gaussians with the outer product of the flattened

6. We use the regularization parameters ϵ = 10−4 and ϵG = 10−2; thus the
lowest logarithmic values of patch and region Gaussians are ln10−4 ≈ −9.2
and ln10−2 ≈ −4.6, respectively.

(a) ZOZ [left: w/o PN, right: w/ PN]

(b) GOG [left: w/o PN, right: w/ PN]

Fig. 11. Performance gain by applying MSN to either one or both of the
patch/region Gaussians on the VIPeR dataset: (a) ZOZ and (b) GOG.

vectors. Recall the vectorization operation in Eq.(4) and our
concern with the case in which α dominates the diagonal el-
ements of logG, i.e., diag(logG) ≈ α1d+1, where 1d+1 ∈
Rd+1 = (1, . . . , 1)T . In this case, we have g = vec(logG) =
[diag(logG)

√
2offdiag(logG)T ]T ≈ [α1T

d+1 eT ]T , where e
is a vector of which elements have smaller magnitudes than α.
In this way, α dominates the patch Gaussian vectors in the LE
tangent space, and also the statistical values over the vectors. For
example, the autocorrelation matrix (similar to the upper-left block
of the Gaussian matrix) of g becomes,

Ξ
′G ≈ 1∑

s∈G ws

∑
s∈G

ws

[
α2
s1d+11

T
d+1 αs1d+1e

T
s

αses1
T
d+1 ese

T
s

]
. (21)

Because it is expected to be |α2
s| > |αses| > |eses|, where es

is an arbitrary component of es, the region autocorrelation matrix
is expected to be largely dominated by α2

s . This means that only
the mean logarithmic eigenvalue of the patch Gaussians is mostly
reflected in the region Gaussian. Therefore, the removal of the
diagonal bias αsId+1 from the patch Gaussian vector can enhance
the representation of HGDs. In fact, MSN cancels this component
(Eq.(16)). We note that αs may also contain the characteristic
properties of a patch because it contains the mean information of
the logarithmic eigenvalues. Namely, if the advantage of removing
the biased components exceeds the potential risk of losing the
discriminative information contained in αs, MSN can improve the
performance. The same discussion holds true when we apply MSN
to region Gaussians.

Fig. 11 compares the performance gain by applying MSN to
either one or both of the patch/region Gaussians under different
norm and power normalizations7. In this comparison, we evaluate
the performance on the VIPeR dataset using three distance metrics
and report their average results. The results indicate that: (1) When
PN is not used, applying MSN to either one of the patch/region
Gaussians tends to improve the performance. This performance
improvement is ascribed to the effects of removing the dominating
αs values in Eq.(21) and diagonal bias elements in the region
Gaussians. Because the application of MSN to either the patch
or region Gaussians improves the performance, applying MSN
to both Gaussians improves the performance further. (2) The
effect of MSN on the region Gaussians disappears when PN is
applied, especially when unnormalized features or the standard
L2 normalization is used. This may be because the improvement
in the region Gaussians resulted from adjusting the magnitude of
diagonal and off-diagonal elements and PN also has this ability.
(3) MSN tends to fail to improve the performance when the I-
L2 normalization is used. The reason is probably that the bilinear

7. L2 represents the standard normalization without bias removal.
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TABLE 2
Evaluating the impact of MSN, PN, and norm normalizations

VIPeR (PUR) GRID (PUR) CUHK01 (PUR) CUHK03 (PUR) Market-1501 (mAP)
Norm PN MSN ZOZ GOG ZOZ GOG ZOZ GOG ZOZ GOG ZOZ GOG

XQDA NFST XQDA NFST XQDA NFST XQDA NFST XQDA NFST XQDA NFST XQDA NFST XQDA NFST XQDA NFST XQDA NFST

None
59.8 61.6 60.8 61.5 44.4 43.6 43.5 42.0 74.9 77.7 74.3 77.1 77.0 77.3 76.9 78.8 41.1 44.3 41.6 45.2✓ 60.8 62.5 61.6 62.6 45.6 44.7 44.9 43.3 75.0 78.2 74.3 77.9 76.8 77.3 76.5 78.9 41.0 44.1 41.4 43.8

✓ 54.1 55.6 57.2 57.3 37.6 36.1 38.5 36.6 70.4 77.0 72.1 77.2 68.9 80.3 59.7 80.5 30.2 38.2 26.1 40.4✓ 55.4 57.2 58.1 58.1 38.9 37.4 40.3 38.2 70.7 76.8 72.8 77.2 69.6 81.1 60.9 81.2 31.1 38.5 27.3 40.5

L2
59.3 61.6 60.6 61.9 44.7 43.2 43.8 41.9 75.3 78.0 75.1 77.3 75.5 76.3 75.5 77.7 38.8 44.1 39.0 45.1✓ 60.5 62.4 61.5 62.6 45.9 44.3 45.1 43.1 73.8 78.2 74.5 77.8 75.3 76.7 76.3 78.7 40.7 44.0 41.7 43.4

✓ 54.2 55.6 57.3 57.3 37.9 35.7 38.3 36.4 71.5 77.0 73.3 77.1 73.7 80.2 73.1 80.6 33.7 38.2 34.5 40.4
55.5 57.0 58.5 58.0 38.6 37.5 40.2 38.2 71.5 76.9 74.2 77.4 72.4 81.4 71.2 81.5 32.5 38.7 33.2 40.1

E-L2
62.0 61.3 62.7 61.3 46.3 43.4 45.1 41.7 75.9 78.5 75.6 77.5 80.5 79.3 81.2 80.7 40.6 43.7 41.3 44.7✓ 62.8 62.7 63.6 62.6 47.0 44.3 46.0 43.0 76.1 78.9 76.5 78.3 81.3 80.1 81.9 81.3 40.8 44.0 41.4 44.3

✓ 60.8 59.5 61.8 59.7 44.1 41.5 43.8 40.2 78.7 80.1 79.2 79.4 83.1 82.2 84.1 83.0 41.8 43.5 43.1 44.9✓ 61.0 60.2 62.1 60.4 44.9 42.1 44.7 41.5 78.7 80.3 79.5 79.8 83.2 82.9 84.4 83.5 41.7 43.4 43.0 44.5

E∗-L2
56.1 55.4 57.8 56.0 39.8 37.3 39.9 37.0 78.6 79.8 79.1 78.9 82.7 81.5 83.6 81.6 40.3 40.8 42.4 41.9✓ 56.5 56.1 58.2 56.7 41.0 38.4 41.6 38.2 78.5 80.0 79.3 79.3 82.5 82.1 83.9 82.4 40.2 40.8 41.8 41.4

✓ 56.3 55.3 57.6 55.7 40.4 37.6 40.5 36.9 78.9 79.7 79.2 79.1 83.4 82.5 84.9 82.6 40.4 40.4 42.2 41.8✓ 56.6 55.8 57.9 56.2 41.0 38.6 41.4 38.3 78.7 79.9 79.4 79.4 83.4 83.0 84.6 83.3 40.2 40.2 41.7 41.5

I-L2
64.1 63.4 64.8 63.8 49.0 46.1 48.9 45.0 78.6 80.6 78.7 79.7 80.8 81.2 82.4 82.2 42.3 46.3 43.5 47.6✓ 63.9 63.5 65.0 64.2 48.2 45.9 48.4 45.0 78.0 80.4 79.1 80.2 81.3 81.6 82.8 82.6 41.8 45.6 43.7 47.8

✓ 62.7 61.3 63.6 61.8 47.2 44.3 47.3 43.7 80.6 81.7 81.2 81.4 83.5 84.4 84.5 85.0 43.2 46.3 45.3 48.4✓ 62.0 61.1 63.6 62.1 46.3 43.7 46.9 43.8 79.9 81.8 81.1 81.4 83.6 84.2 84.5 84.9 42.7 45.4 45.1 48.2
The mark ✓indicates the usage of MSN/PN. The improved scores by MSN in the case of {w/o PN, w/ PN} are marked in {blue, red}, respectively.

transformation in the I-L2 normalization also enables elimination
of the large bias caused by αs.

Table 2 lists the results on all five datasets when MSN was
applied to both the patch/region Gaussians. We see that MSN tends
to improve the performance except for the I-L2 normalization8.
Analysis of PN and the norm normalizations. We conducted an
in-depth analysis of PN and the norm normalizations in Table 2.
The results indicate that: (1) Both the E-L2 and I-L2 normaliza-
tions improve the performance of the original features, whereas
the L2 normalization shows either no or a slight improvement.
These results confirm the effect of removing the large bias that
exists on the descriptors. (2) The E∗-L2 normalization decreases
the performance of the original features in several datasets. These
results are probably obtained because HGDs have essentially
uncorrelated covariance components in pixel features, e.g., M90

and M180. Enlarging narrowly ranged dimensions can emphasize
these irrelevant dimensions. (3) PN decreases the performance on
several datasets. The reason is probably the same as for the E∗-
L2 normalization. Furthermore, in Table 2, PN shows improved
performance on the CUHK01 and CUHK03 datasets. These re-
sults are probably attributed to the smaller effect of magnifying
small feature elements than the E∗-L2 normalization. Thus, PN
performs well when the magnitudes of discriminative elements are
very small. (4) Normalization with intrinsic bias removal (I-L2)
improves the performance more than normalization with extrinsic
bias removal (E-L2 and E∗-L2), which suggests that a greater
respect for Riemannian geometry enables higher performance.

Fig. 12 compares the distance distribution of the GOG de-
scriptor on all possible image pairs of the VIPeR dataset. We
confirm that by applying the bias removal, the range of distance
distributions becomes broader than the standard L2 normalization,
both in the case of the extrinsic and intrinsic bias removals (E-
L2 and I-L2). Furthermore, the I-L2 normalization has a slightly
broader distance distribution than the E-L2 normalization. Apart
from this, the distance distribution of the E∗-L2 normalization
is narrower than that of the E-L2 normalization. A plausible
reason is that similar elements occur in small ranges of values in
HGDs. Enlarging these ranges would enable the cosine distance
to be dominated by similar elements. For the same reason, PN
narrows the distance distribution. Moreover, we confirm that the
bias removal of the E-L2 and I-L2 normalizations broadens the
distance distribution, also in the case of PN.

8. MSN also tends to fail to improve the scores on the Market-1501 dataset
probably because our approach leaves large misalignments unaddressed.

Fig. 12. Histogram of distances of GOG descriptor on all image pairs of
the VIPeR dataset (Left w/o PN, Right w/ PN).

5.4 Performance Comparison
We compare the following aspects of HGDs with other state-of-
the-art approaches: (1) Meta-descriptors; (2) Person re-id descrip-
tors; (3) State-of-the-art methods on person re-id.
Comparison with existing meta-descriptors. We compare HGDs
with existing meta-descriptors: Local Descriptors encoded by
Fisher Vector (LDFV) [75], Riemannian(R)-VLAD [57], and FV-
L2EMG [55]. LDFV encodes pixel features using FV coding,
which encodes the difference of pixel features from pre-trained
GMM means. By following the recommended setting [75], we set
the number of GMM components to 16. R-VLAD is the VLAD
coding on the Riemannian manifold data. We used the Stein
divergence [76] as metric to encode local covariance matrices. We
set the number of codebooks to 32. FV-L2EMG summarizes patch
Gaussian matrices by FV coding. We confirmed that the influence
of the number of GMM components is small and set it to 16.

We extract each of the meta-descriptors from the same hor-
izontal strips as HGDs using the same pixel features of the
four color spaces. For a fair comparison, we commonly use the
three metric learnings and apply the mean removal and L2 norm
normalization (equivalent to the E-L2 for SPD matrix descriptors).
Because of the inapplicability to several descriptors, we evaluate
the performance without the patch weight for all descriptors.

Table 3 (a) compares the results of the different methods.
The hierarchical descriptors, R-VLAD and FV-L2EMG clearly
outperform the descriptor based on single-layered distribution,
LDFV. The ZOZ and GOG outperform R-VLAD because they
include the mean information, which is missing from the local
covariance matrices used in R-VLAD. Additionally, ZOZ and
GOG outperform FV-L2EMG. These results may be understood
by considering that the FV coding assumes diagonal covariance
and thus the correlations within the local Gaussian vectors are
absent in encoding.
Comparison with existing re-id descriptors. We compare the
HGDs with several state-of-the-art descriptors used in super-
vised person re-id: gBiCov [34], Color Histogram(CH)+LBP [6],
LOMO [11], Fine-Tuned(FT) CNN [45], and Histogram of In-
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tensity Pattern and Ordinal Pattern (HIPHOP) [13]. We used the
public codes with default parameters for LOMO and gBiCov. We
used 75 regions to extract 28 bin CH and two uniform LBPs for
CH+LBP, which was the best setting in the previous work [6].
FTCNN conducts a fine-tuning of the pre-trained AlexNet [37]
using a dataset consisting of pedestrian attributes and extracts
features from the fc6 layer. HIPHOP is a concatenation feature
of two histogram patterns extracted from the lower layers of the
pre-trained AlexNet. In addition, we improve the baseline by using
CNN features of a Residual Network (ResNet) [77]. We trained
a 50-layered ResNet using the training split of the Market-1501
dataset with a triplet loss function [78]. Following the previous
work [78], we use the features of the last fully connected layer
(fc2). Because the fully connected layer may overfit the trained
dataset of CNN, we also use the last convolutional features
(conv5 x). With average pooling, we accumulate the conv5 x
features in the same seven horizontal strips as HGDs. The detailed
settings are given in Appendix F. We apply the three metric
learnings for all the descriptors. To show the superiority of the
HGDs against the existing re-id descriptors, we use the final
model, i.e., MSN and the I-L2 normalization for HGDs. We do not
use PN because it decreased the performance on several datasets.

Table 3 (b) and (c), respectively, present the results on hand-
crafted and CNN features. Although LOMO and CH+LBP use
a larger number of spatial regions and higher dimensional pixel
features, both ZOZ and GOG outperform these descriptors by a
large margin. The superiority of these descriptors originates from
their hierarchical use of the mean and covariance information
of pixel features, whereas LOMO uses only the mean informa-
tion. In addition, ZOZ and GOG outperform CNN features such
as HIPHOP and FTCNN. On the Market-1501 dataset, ResNet
outperforms GOG and ZOZ in both fc2 and conv5 x features.
On other datasets, the conv5 x features largely outperform fc2
features. Nevertheless, GOG and ZOZ show higher performances
than the conv5 x features. Notably, the combination of ResNet and
GOG/ZOZ shows significant improvements from both features.
These results are probably obtained because the low-level features
of HGDs are complementary to high-level features of CNN.
Comparison with state-of-the-art approaches. We compare the
best combination of HGDs and distance metrics with state-of-the-
art person re-id approaches. In this comparison, we refer HGD
to as GOG+XQDA, ZOZ+XQDA, ZOZ+NFST, GOG+NFST,
and GOG+NFST, respectively, for the VIPeR, GRID, CUHK01,
CUHK03, and Market-1501 datasets. We also use the combination
of HGD and ResNet, which we refer to as HGD+ResNet. The
normalizations we used are the same as those in the previous
comparison.

Table 4 (a) lists the results of the state-of-the-art metric
learning approaches. We see that HGD alone outperforms the
results of DNS [12] and MESP [79]. We note that NK3ML [15]
uses the combination of GOG and LOMO features for the input of
metric learning. On the GRID dataset, HGD outperforms NK3ML
due to the I-L2 normalization we developed. With the E-L2
normalization, HGD performed 27.1% rank-1 rate, whereas it
increased to 28.2% by the I-L2 normalization. We note that both
CRAFT [13] and IRS [14] use the fusion of hand-crafted features
and CNN features; thus, these methods show higher performances
than HGD alone. Nevertheless, we see that the combination of
ResNet and HGD outperforms these results.

Table 4 (b) lists the results of the state-of-the-art deep learning
approaches. On the VIPeR and GRID datasets, HGD outperforms

Gated-SCNN [39], Fused-CNN [40], Spindle-net [41], and Multi-
level similarity-CNN [43]. These results are attributed to the lack
of a sufficiently large number of training samples to train deep
models. Typically, a deep model contains millions of parameters.
Additionally, the nonlinear activation function in each layer of
the CNN may discard appearance patterns that are not covered
in the training samples. For example, the VIPeR dataset contains
only one person who is in yellow jeans (Fig 5 (a)). Although
such rare appearances are discriminative, deep learning methods
may discard such discriminative appearance patterns. In contrast,
HGD has no dependency on training samples; thus, it describes the
uncovered appearance patterns in training data more appropriately.

On the CUHK03 and the Market-1501 datasets, deep learning
approaches [42], [43], [44], [80] outperform HGDs. The highly
adaptive abilities of the deep models enable complex variations
to be learned that commonly exist in both the training and test
sets. For example, although the Market-1501 dataset contains a
significant difference in the bounding box of persons (Fig 5 (e)),
these misalignments are common in the training and test sets. In
contrast, HGDs use fixed horizontal strips without employing the
mechanism of handling large variations of the bounding boxes.
Although metric learning learns common variation in the training
and test sets, this ability is limited compared with deep models
because it basically learns a linear transformation of the extracted
features. Thus, on these large-scale datasets, deep learning can
improve the performance.

We emphasize that the focus of the study presented in this
paper is the latest advance of handcrafted descriptors. As we have
shown, HGDs would complement the recent advances of CNNs.
This work is also foreseen to complement the advances of feature
augmentation and metric learning methods such as CRAFT [13].

6 CONCLUSIONS

We have proposed novel hierarchical meta-descriptors for person
re-id, which model both the mean and covariance information of
the pixel features in both of the patch and region hierarchies.
Extensive experiments confirmed the importance of both the mean
information of pixel features and the hierarchal distribution for
supervised person re-id. We also verified that the scale normaliza-
tion of Gaussian matrices enhances the hierarchical descriptors.
Based on the normalization, we proposed zero-mean Gaussian
embedding, which achieves similar performance to the original
Gaussian embedding with smaller dimensionality. Additionally,
we investigated the feature norm normalization of SPD matrix-
based descriptors. The normalization with the intrinsic statistics
of the Riemannian manifold exhibited more accurate re-id results.

The normalization results have encouraged us to develop
metric learnings of the SPD matrix descriptor for person re-id,
e.g., [81], [82]. Another future direction is to add more hierarchies
to HGDs. In our preliminary experiments, this approach showed
only slight improvements, whereas the dimensionality of the
descriptors increased drastically. We expect that by developing
supervised descriptor learning for HGDs, the difficulty in handling
more hierarchies would be solved. Further, we consider enhancing
the robustness of HGDs against large changes in the viewpoint
and/or pose and occlusions. In this direction, obtaining pose-
normalized regions by the recently advanced pose estimation
technique seems promising [41], [42], [80]. We anticipate that
the highly discriminative ability of HGDs would facilitate the
description of features on the pose-normalized regions.
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TABLE 3
Comparison of state-of-the-art descriptors: (a) Meta-descriptors; (b) Hand-crafted Re-id descriptors; (c) Re-id features using CNN

VIPeR (PUR) GRID (PUR) CUHK01 (PUR) CUHK03 (PUR) Market-1501 (mAP)
Methods Dim. KISSME XQDA NFST KISSME XQDA NFST KISSME XQDA NFST KISSME XQDA NFST KISSME XQDA NFST

(a)
LDFV [75] 6,944 43.9 44.5 48.4 35.3 36.4 37.2 53.9 58.1 61.0 54.8 66.5 56.4 16.7 21.5 24.1

R-VLAD [57] 30,464 46.6 46.6 45.4 33.6 33.9 30.1 67.3 68.3 69.2 77.2 82.0 82.7 23.1 30.6 31.7
FV-L2EMG [55] 38,304 49.6 49.9 48.8 40.6 40.7 37.3 64.3 66.7 68.7 61.4 72.4 71.6 19.4 27.3 30.6

ZOZ(w/o patch weight, E-L2) 16,828 60.8 61.3 61.3 43.9 44.4 41.3 72.4 72.7 76.0 77.2 81.0 80.7 32.5 36.8 40.3
GOG(w/o patch wieght, E-L2) 27,622 61.5 61.9 60.9 43.4 43.8 40.2 72.7 73.3 75.5 78.3 81.5 81.9 33.6 38.1 41.8

(b)

gBiCov [34] 5,940 38.2 40.4 45.6 28.1 28.4 29.1 45.5 47.6 49.9 46.6 45.8 49.8 10.4 10.6 11.7
CH+LBP [6] 32,250 43.0 45.0 46.1 36.3 36.7 36.8 54.1 57.2 59.8 49.5 56.6 56.4 15.3 16.0 22.0
LOMO [11] 26,960 56.5 56.9 57.0 36.4 36.7 34.4 72.1 72.0 73.9 71.6 69.2 76.9 24.1 21.0 29.6

ZOZ 16,828 64.2 64.3 63.7 48.1 48.1 45.9 77.9 79.1 80.9 75.3 81.7 82.3 33.2 41.7 45.5
GOG 27,622 64.7 64.9 64.3 48.0 48.0 44.7 77.9 78.9 79.9 76.4 82.6 83.4 32.3 42.8 46.5

(c)

HIPHOP [13] 84,096 62.2 62.6 61.6 41.2 41.3 38.6 73.9 73.6 75.8 66.0 63.4 71.7 28.4 26.2 38.5
FTCNN [45] 4,096 56.6 57.4 56.4 43.1 43.5 42.0 68.7 69.0 68.5 69.4 70.2 62.9 28.2 28.7 30.4

ResNet (fc2) [78] 128 44.2 45.2 40.6 31.6 31.6 33.0 44.4 45.6 23.5 48.5 49.5 44.4 65.6 65.9 52.2
ResNet (conv5 x) [78] 14,336 59.6 61.9 59.6 42.3 42.1 40.2 62.5 66.0 66.1 61.6 65.0 53.3 65.8 66.5 63.0

ResNet (conv5 x)+ZOZ 31,164 71.2 71.6 70.7 53.9 54.2 51.3 81.7 82.1 83.5 80.6 84.4 84.2 66.2 68.6 69.0
ResNet (conv5 x)+GOG 41,958 72.1 72.4 70.9 54.0 54.0 50.1 81.8 82.4 83.2 81.7 85.3 84.8 66.9 69.1 69.5

The red/blue scores show the first/second best scores in each comparison.

TABLE 4
State-of-the-art results (CMC@rank-r/mAP):(a) Feature extraction +

metric learning approaches; (b) Deep learning approaches
VIPeR GRID

Methods Ref. r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20

(a)

DNS [12] CVPR’16 51.2 82.1 90.5 95.9 - - - -
MESP [79] IJCV’17 - - - - 23.5 42.3 52.4 62.2

CRAFT [13] PAMI’18 54.2 82.4 91.5 96.9 26.0 50.6 62.5 73.3
NK3ML [15] ECCV’18 - - - - 27.2 - 61.0 71.0

IRS [14] IJCV’18 54.6 - 90.3 95.7 - - - -
HGD Ours 52.0 81.1 89.8 95.2 28.2 49.7 60.6 71.5

HGD+ResNet Ours 63.4 86.7 93.7 97.3 33.7 60.4 70.8 79.0

(b)
Gated-SCNN [39] ECCV’16 37.8 66.9 77.4 - - - - -
Fused-CNN [40] NIPS’16 - - - - 19.2 38.4 53.6 66.4

Spindle [41] CVPR’17 53.8 74.1 83.2 92.1 - - - -
ML-Sim. [43] CVPR’18 50.1 73.1 84.4 - - - - -

CUHK01 CUHK03 Market-1501
Methods Ref. r=1 r=10 r=20 r=1 r=10 r=20 r=1 mAP

(a)

DNS [12] CVPR’16 - - - 54.7 94.8 - 61.0 35.7
MESP [79] IJCV’17 - - - - - - 53.1 26.7

CRAFT [13] PAMI’18 78.8 95.3 97.8 - - - 71.8 45.5
NK3ML [15] ECCV’18 76.8 95.6 98.0 - - - - -

IRS [14] IJCV’18 80.8 96.9 98.7 83.3 97.9 98.6 73.9 49.4
HGD Ours 74.9 95.1 97.5 83.9 97.6 98.7 71.7 47.8

HGD+ResNet Ours 80.3 97.0 98.7 88.5 98.4 99.2 87.0 70.9

(b)
PDC [42] ICCV’17 - - - 78.3 97.2 98.4 84.1 63.4

ML-Sim. [43] CVPR’18 - - - 86.5 99.1 - - -
PN-GAN [80] ECCV’18 67.7 91.8 - 79.8 98.6 - 89.4 72.6

PA-Bilinear [44] ECCV’18 - - - 88.0 98.6 99.0 90.2 76.0
The red/blue scores shows the first/second best scores in (a).
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