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Chapter 1

Introduction

GLPK (GNU Linear Programming Kit) is a set of routines written in the ANSI C pro-
gramming language and organized in the form of a callable library. It is intended for
solving linear programming (LP), mixed integer programming (MIP), and other related
problems.

1.1 LP Problem

GLPK assumes the following formulation of linear programming (LP) problem:
minimize (or maximize)
Z =C1Tmy1 + C2Tmy2 + - .. + CnTmgn + Co (1.1)
subject to linear constraints

T1 = G11Tm+1 + A12Tm+42 + - - . + A1pTm+n
T2 = A21Tm+1 + A22Tm+42 + ... + A2nTmin (1.2)

Tm = Qml1Tm+1 T Gm2Tm+2 + -« + CmnTm4n

and bounds of variables

i < <w
lo <x9<u
2=tz =T (1.3)
lmin < Tmgn < Uman
where: 1,29, ...,z — auxiliary variables; x,+1, Tm+2, - - . , Tm+n — structural variables;
Z — objective function; ¢, ca, . . . , ¢, — objective coefficients; ¢o — constant term (“shift”)
of the objective function; ai1, a2, ..., am, — constraint coefficients; l1,1lo, ..., lmtn —

lower bounds of variables; w1, us, ..., Umn+n — upper bounds of variables.

Auxiliary variables are also called rows, because they correspond to rows of the con-
straint matrix (i.e. a matrix built of the constraint coefficients). Analogously, structural
variables are also called columns, because they correspond to columns of the constraint
matrix.

Bounds of variables can be finite as well as infinite. Besides, lower and upper bounds
can be equal to each other. Thus, the following types of variables are possible:



Bounds of variable Type of variable

—00 <, < 0o Free (unbounded) variable
Iy <z < 400 Variable with lower bound

—00 < Tk < ug Variable with upper bound
I < zp, < uyg Double-bounded variable
l, = xp = ug Fixed variable

Note that the types of variables shown above are applicable to structural as well as to
auxiliary variables.

To solve the LP problem (1.1)—(1.3) is to find such values of all structural and aux-
iliary variables, which:

a) satisfy to all the linear constraints (1.2), and

b) are within their bounds (1.3), and

c¢) provide a smallest (in the case of minimization) or a largest (in the case of maxi-
mization) value of the objective function (1.1).

For solving LP problems GLPK uses a well known numerical procedure called the
simplex method. The simplex method performs iterations, where on each iteration it
transforms the original system of equaility constraints (1.2) resolving them through dif-
ferent sets of variables to an equivalent system called the simplez table (or sometimes the
simplez tableau), which has the following form:

Z= di(zn)1+ de(zn)o+...+ du(zn)n
(zB)1 = an1(zn)1 + ar2(zn)2 + ...+ a1 (TN )n
(zB)2 = ao1(zn)1 + aza(zn)2 + ... + azp(TN)n (1.4)

(B)m = am1(xN)1 + am2(zN)2 + .. + amn(TN)n

where: (zg)1,(xB)2,...,(xB)m — basic variables; (zn)1, (zN)2,...,(TN)n — non-basic
variables; dy,ds,...,d, — reduced costs; ai1, 19, ..., n, — coeflicients of the simplex
table. (May note that the original LP problem (1.1)—(1.3) also has the form of a simplex
table, where all equalities are resolved through auxiliary variables.)

From the linear programming theory it is well known that if an optimal solution of the
LP problem (1.1)—(1.3) exists, it can always be written in the form (1.4), where non-basic
variables are set on their bounds while values of the objective function and basic variables
are determined by the corresponding equalities of the simplex table.

A set of values of all basic and non-basic variables determined by the simplex table is
called basic solution. If all basic variables are within their bounds, the basic solution is
called (primal) feasible, otherwise it is called (primal) infeasible. A feasible basic solution,
which provides a smallest (in case of minimization) or a largest (in case of maximization)
value of the objective function is called optimal. Therefore, for solving LP problem the
simplex method tries to find its optimal basic solution.

Primal feasibility of some basic solution may be stated by simple checking if all basic
variables are within their bounds. Basic solution is optimal if additionally the following
optimality conditions are satisfied for all non-basic variables:

Status of (zx); Minimization Maximization
(zN); is free dj =0 dj=0
(xn); is on its lower bound d; >0 d; <0

(zn); is on its upper bound dj <0 dj >0



In other words, basic solution is optimal if there is no non-basic variable, which changing
in the feasible direction (i.e. increasing if it is free or on its lower bound, or decreasing
if it is free or on its upper bound) can improve (i.e. decrease in case of minimization or
increase in case of maximization) the objective function.

If all non-basic variables satisfy to the optimality conditions shown above (indepen-
dently on whether basic variables are within their bounds or not), the basic solution is
called dual feasible, otherwise it is called dual infeasible.

It may happen that some LP problem has no primal feasible solution due to incorrect
formulation — this means that its constraints conflict with each other. It also may happen
that some LP problem has unbounded solution again due to incorrect formulation — this
means that some non-basic variable can improve the objective function, i.e. the optimality
conditions are violated, and at the same time this variable can infinitely change in the
feasible direction meeting no resistance from basic variables. (May note that in the latter
case the LP problem has no dual feasible solution.)

1.2 MIP Problem

Mized integer linear programming (MIP) problem is LP problem in which some variables
are additionally required to be integer.

GLPK assumes that MIP problem has the same formulation as ordinary (pure) LP
problem (1.1)—(1.3), i.e. includes auxiliary and structural variables, which may have lower
and/or upper bounds. However, in case of MIP problem some variables may be required
to be integer. This additional constraint means that a value of each integer variable must
be only integer number. (Should note that GLPK allows only structural variables to be
of integer kind.)

1.3 Brief Example

In order to understand what GLPK is from the user’s standpoint, consider the following
simple LP problem:

maximize

Z =10z + 69 + 423

subject to

r1 + z2 + 3 <100
1021 +4x9 +5x3 < 600
2x1 +2x9 +623 < 300

where all variables are non-negative
leOv xZZoa 'T3ZO
At first this LP problem should be transformed to the standard form (1.1)—(1.3). This

can be easily done by introducing auxiliary variables, by one for each original inequality
constraint. Thus, the problem can be reformulated as follows:



10

maximize
Z = 10x1 4 65 + 4x3

subject to
p= T1+ T2+ 3
q =10x1+4x2+5x3
r = 2x1+2x9+6x3

and bounds of variables

—oo < p <100 0< 1 <+
—o00 < g < 600 0 < a9 < 400
—oo < r <300 0< 23 <400

where p, ¢, r are auxiliary variables (rows), and x1, x2, 3 are structural variables (columns).
The example C program shown below uses GLPK API routines in order to solve this
LP problem.

/* sample.c */

#include <stdio.h>
#include <stdlib.h>
#include "glpk.h"

int main(void)
{ LPX *lp;
int ia[1+1000], ja[1+1000];
double ar[1+1000], Z, x1, x2, x3;
sl: 1p = lpx_create_prob();
s2: lpx_set_prob_name(lp, "sample");
s3: 1lpx_set_obj_dir(lp, LPX_MAX);
s4: lpx_add_rows(lp, 3);

sb:  lpx_set_row_name(lp, 1, "p");
s6: lpx_set_row_bnds(1lp, 1, LPX_UP, 0.0, 100.0);
s7: lpx_set_row_name(lp, 2, "q");
s8: lpx_set_row_bnds(1lp, 2, LPX_UP, 0.0, 600.0);
s9: lpx_set_row_name(lp, 3, "r");
s10: 1lpx_set_row_bnds(1lp, 3, LPX_UP, 0.0, 300.0);

s11: 1px_add_cols(lp, 3);

s12: 1px_set_col_name(lp, 1, "x1");
s13: 1lpx_set_col_bnds(lp, 1, LPX_LO, 0.0, 0.0);
s14: 1px_set_obj_coef(lp, 1, 10.0);
s15: 1lpx_set_col_name(lp, 2, "x2");
s16: 1lpx_set_col_bnds(lp, 2, LPX_LO, 0.0, 0.0);
s17: 1px_set_obj_coef(lp, 2, 6.0);
s18: 1px_set_col_name(lp, 3, "x3");
s19: 1lpx_set_col_bnds(1lp, 3, LPX_L0O, 0.0, 0.0);

s20: 1lpx_set_obj_coef(lp, 3, 4.0);
s21: ial1] =1, jal1l]l = 1, ar[1]
s22: ial2] =1, jal2] = 2, ar[2]

1.0; /* al1,1]
1.0; /* al1,2]

1 %/
1 x/
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s23: ia[3] =1, jal3] = 3, ar[3] = 1.0; /* al[1,3] = 1 %/
s24: ial4] = 2, jal4] = 1, ar[4] = 10.0; /* a[2,1] = 10 */
s26: ia[b] = 3, jalb] =1, ar[6] = 2.0; /* al3,1] = 2 */
s26: ial6] = 2, jal6] = 2, ar[6] = 4.0; /* a[2,2] = 4 =/
s27: ial7] = 3, jal7] = 2, ar[7] = 2.0; /* a[3,2] = 2 x*/
s28: ial[8] = 2, jal8] = 3, ar[8] = 5.0; /* a[2,3] = 5 */
s29: 1ia[9] = 3, jal9] = 3, ar[9] = 6.0; /* al[3,3] = 6 */
s30: 1lpx_load_matrix(lp, 9, ia, ja, ar);

s31: lpx_simplex(1lp);
s32: Z = lpx_get_obj_val(lp);

s33: x1 = lpx_get_col_prim(lp, 1);
s34: x2 = lpx_get_col_prim(lp, 2);
s35: x3 = lpx_get_col_prim(lp, 3);

s36: printf("\nZ = %g; x1 = %g; x2 = %g; x3 = Yg\n", Z, x1, x2, x3);
s37: 1lpx_delete_prob(lp);
return O;

/* eof */

The statement s1 creates a problem object using the routine 1px_create_prob. Being
created the object is initially empty. The statement s2 assigns a symbolic name to the
problem object.

The statement s3 calls the routine 1px_set_obj_dir in order to set the optimization
direction flag, where LPX_MAX means maximization.

The statement s4 adds three rows to the problem object.

The statement s5 assigns the symbolic name ‘p’ to the first row, and the statement s6
sets the type and bounds of the first row, where LPX_UP means that the row has an upper
bound. The statements s7, s8, s9, s10 are used in the same way in order to assign the
symbolic names ‘q’ and ‘r’ to the second and third rows and set their types and bounds.

The statement s11 adds three columns to the problem object.

The statement s12 assigns the symbolic name ‘x1’ to the first column, the statement
513 sets the type and bounds of the first column, where LPX_LO means that the column has
an lower bound, and the statement s14 sets the objective coefficient for the first column.
The statements s15—s20 are used in the same way in order to assign the symbolic names
‘x2’ and ‘x3’ to the second and third columns and set their types, bounds, and objective
coeflicients.

The statements s21—s29 prepare non-zero elements of the constraint matrix (i.e.
constraint coefficients). Row indices of each element are stored in the array ia, column
indices are stored in the array ja, and numerical values of corresponding elements are
stored in the array ar. Then the statement s30 calls the routine 1px_load_matrix, which
loads information from these three arrays into the problem object.

Now all data have been entered into the problem object, and therefore the statement
s31 calls the routine 1px_simplex, which is a driver to the simplex method, in order
to solve the LP problem. This routine finds an optimal solution and stores all relevant
information back into the problem object.

The statement s32 obtains a computed value of the objective function, and the state-
ments s33—s35 obtain computed values of structural variables (columns), which corre-
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spond to the optimal basic solution found by the solver.
The statement s36 prints the optimal solution to the standard output. The printout

may look like follows:
Z = 733.333; x1 = 33.3333; x2 = 66.6667; x3 = 0

Finally, the statement s37 calls the routine 1px_delete_prob, which frees all the
memory allocated to the problem object.



Chapter 2

API Routines

This chapter describes GLPK API routines intended for using in application programs.

Error handling If some GLPK API routine detects erroneous or incorrect data passed
by the application program, it sends appropriate diagnostic messages to the standard
output and then abnormally terminates the application program. In most practical cases
this allows to simplify programming avoiding numerous checks of return codes. Thus,
in order to prevent crashing the application program should check all data, which are
suspected to be incorrect, before calling GLPK API routines.

Should note that this kind of error handling is used only in cases of incorrect data
passed by the application program. If, for example, the application program calls some
GLPK API routine to read data from an input file and these data are incorrect, the GLPK
API routine reports about error in the usual way by means of return code.

Thread safety Currently GLPK API routines are non-reentrant and therefore cannot
be used in multi-thread programs.

Array indexing Normally all GLPK routines start array indexing from 1, not from 0
(except the specially stipulated cases). This means, for example, if some vector z of the
length n is passed as an array to some GLPK routine, the latter expects vector components
to be placed in locations x[1], x[2], ..., x[n], and the location x[0] normally is not
used.

In order to avoid indexing errors it is most convenient and most reliable to declare the
array x as follows:

double x[1+n];
or to allocate it as follows:
double *x;
% - éalloc(1+n, sizeof (double));

In both cases one extra location x[0] is reserved that allows passing this array to GLPK
routines in a usual way.

13



14

Using GLPK routines in C++4 programs If you need to use GLPK routines in
C++ programs, use the following construction:

extern "C" {
#include "glpk.h"
}

2.1 Problem object

GLPK API routines deal with so called problem objects, which are program objects of type
LPX intended to represent particular LP and MIP problem instances.
The type LPX is a data structure declared in the header file glpk.h as follows:

typedef struct { ... } LPX;

Problem objects (i.e. program objects of the LPX type) are allocated and managed
internally by the GLPK API routines. The application program should never use any
members of the LPX structure directly and should deal only with pointers to these objects
(that is, LPX * values).

Each problem object consists of four logical segments, which are:

e problem segment,

e basis segment,

e interior point segment,

e MIP segment, and

e control parameters and statistics segment.

Problem segment The problem segment contains original LP/MIP data, which corre-
sponds to the problem formulation (1.1)—(1.3) (see Section 1.1, page 7):

e rows (auxiliary variables),

e columns (structural variables),

e objective function, and

e constraint matrix.

Rows and columns have the same set of the following attributes:

e ordinal number,

e symbolic name (1 up to 255 arbitrary graphic characters),

e type (free, lower bound, upper bound, double bound, fixed),

e numerical values of lower and upper bounds,

e scale factor.

Ordinal numbers are intended for referencing rows and columns. Row ordinal numbers
are integers 1,2, ..., m, and column ordinal numbers are integers 1,2, ..., n, where m and
n are, respectively, the current number of rows and columns in the problem object.

Symbolic names are intended only for informational purposes. They cannot be used
for referencing rows and columns.

Types and bounds of rows (auxiliary variables) and columns (structural variables) are
explained above (see Section 1.1, page 7).

Scale factors are used internally for scaling corresponding rows and columns of the
constraint matrix.
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Information about the objective function includes numerical values of objective coef-
ficients and a flag, which defines the optimization direction (i.e. minimization or maxi-
mization).

The constraint matriz is a m x n rectangular matrix built of constraint coefficients a;;,
which defines the system of linear constraints (1.2) (see Section 1.1, page 7). This matrix
is stored in the problem object in both row-wise and column-wise sparse formats.

Once the problem object has been created, the application program can access and
modify any components of the problem segment in arbitrary order.

Basis segment The basis segment of the problem object keeps information related to a
current basic solution. This information includes:

e row and column statuses,

e basic solution statuses,

e factorization of the current basis matrix, and

e basic solution components.

The row and column statuses define which rows and columns are basic and which are
non-basic. These statuses may be assigned either by the application program of by some
API routines. Note that these statuses are always defined independently on whether the
corresponding basis is valid or not.

The basic solution statuses include the primal status and the dual status, which are set
by the simplex-based solver once the problem has been solved. The primal status shows
whether a primal basic solution is feasible, infeasible, or undefined. The dual status shows
the same for a dual basic solution.

The factorization of the basis matriz is some factorized form (like LU-factorization) of
the current basis matrix (defined by the current row and column statuses). The factoriza-
tion is used by the simplex-based solver and kept when the solver terminates the search.
This feature allows efficiently reoptimizing the problem after some modifications (for ex-
ample, after changing some bounds or objective coefficients). It also allows performing a
post-optimal analysis (for example, computing components of the simplex table, etc.).

The basic solution components include primal and dual values of all auxiliary and
structural variables for the most recently obtained basic solution.

Interior point segment The interior point segment is automatically allocated after the
problem has been solved using the interior point solver. It contains interior point solution
components, which include the solution status, and primal and dual values of all auxiliary
and structural variables.

MIP segment The MIP segment is used only for MIP problems. This segment includes:

e column kinds,

e MIP solution status, and

e MIP solution components.

The column kinds define which columns (i.e. structural variables) are integer and
which are continuous.

The MIP solution status is set by the MIP solver and shows whether a MIP solution
is integer optimal, integer feasible (non-optimal), or undefined.

The MIP solution components are computed by the MIP solver and includes primal
values of all auxiliary and structural variables for the most recently obtained MIP solution.
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Note that in the case of MIP problem the basis segment corresponds to an optimal
solution of LP relaxation, which is also available to the application program.

Currently the search tree is not kept in the MIP segment. Therefore if the search has
been terminated, it cannot be continued.

Control parameters and statistics segment This segment contains a fixed set of
parameters, where each parameter has the following three attributes:

e code,

e type, and

e current value.

The parameter code is intended for referencing a particular parameter. All the param-
eter codes have symbolic names, which are macros defined in the header file glpk.h. Note
that the parameter codes are distinct positive integers.

The parameter type can be integer, real (floating-point), and text (character string).

The parameter value is its current value kept in the problem object. Initially (after
the problem object has been created) all parameters are assigned some default values.

Parameters are intended for several purposes. Some of them, which are called control
parameters, affect the behavior of API routines (for example, the parameter LPX_K_ITLIM
limits maximal number of simplex iterations available to the solver). Others, which are
called statistics, just represent some additional information about the problem object (for
example, the parameter LPX_K_ITCNT shows how many simplex iterations were performed
for a particular problem object).
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2.2 Problem creating and modifying routines

2.2.1 1px create prob — create problem object
Synopsis

#include "glpk.h"

LPX *1px_create_prob(void);

Description The routine 1px_create_prob creates a new problem object, which is
“empty”, i.e. has no rows and no columns.

Returns The routine returns a pointer to the created object, which should be used in
any subsequent operations on this object.

2.2.2 1lpx set prob name — assign (change) problem name
Synopsis

#include "glpk.h"
void lpx_set_prob_name(LPX *1lp, char *name);

Description The routine 1px_set_prob_name assigns a given symbolic name (1 up to
255 characters) to the specified problem object.

If the parameter name is NULL or empty string, the routine erases an existing symbolic
name of the problem object.

2.2.3 1lpx_set_obj name — assign (change) objective function name
Synopsis

#include "glpk.h"
void lpx_set_obj_name(LPX *1lp, char *name);

Description The routine 1px_set_obj_name assigns a given symbolic name (1 up to
255 characters) to the objective function of the specified problem object.

If the parameter name is NULL or empty string, the routine erases an existing symbolic
name of the objective function.

2.2.4 1lpx set obj dir — set (change) optimization direction flag
Synopsis

#include "glpk.h"
void lpx_set_obj_dir(LPX *1lp, int dir);
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Description The routine lpx_set_obj_dir sets (changes) the optimization direction
flag (i.e. “sense” of the objective function) as specified by the parameter dir:

LPX_MIN minimization;

LPX_MAX maximization.

2.2.5 1lpx_add rows — add new rows to problem object

Synopsis

#include "glpk.h"
int lpx_add_rows(LPX *1lp, int nrs);

Description The routine 1px_add_rows adds nrs rows (constraints) to the specified
problem object. New rows are always added to the end of the row list, so the ordinal
numbers of existing rows are not changed.

Being added each new row is initially free (unbounded) and has empty list of the
constraint coefficients.

Returns The routine lpx_add_rows returns the ordinal number of the first new row
added to the problem object.

2.2.6 1lpx_add _cols — add new columns to problem object

Synopsis

#include "glpk.h"
int 1px_add_cols(LPX *1lp, int ncs);

Description The routine 1px_add_cols adds ncs columns (structural variables) to the
specified problem object. New columns are always added to the end of the column list, so
the ordinal numbers of existing columns are not changed.

Being added each new column is initially fixed at zero and has empty list of the
constraint coefficients.

Returns The routine 1px_add_cols returns the ordinal number of the first new column
added to the problem object.

2.2.7 1lpx_set_row name — assign (change) row name

Synopsis

#include "glpk.h"
void lpx_set_row_name(LPX *1lp, int i, char *name);
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Description The routine lpx_set_row_name assigns a given symbolic name (1 up to
255 characters) to i-th row (auxiliary variable) of the specified problem object.

If the parameter name is NULL or empty string, the routine erases an existing name of
i-th row.

2.2.8 1lpx set_col name — assign (change) column name
Synopsis

#include "glpk.h"
void lpx_set_col_name(LPX *lp, int j, char *name);

Description The routine lpx_set_col_name assigns a given symbolic name (1 up to
255 characters) to j-th column (structural variable) of the specified problem object.

If the parameter name is NULL or empty string, the routine erases an existing name of
j-th column.

2.2.9 1lpx set row bnds — set (change) row bounds
Synopsis

#include "glpk.h"
void lpx_set_row_bnds(LPX *lp, int i, int type, double 1b, double ub);

Description The routine 1px_set_row_bnds sets (changes) the type and bounds of i-th
row (auxiliary variable) of the specified problem object.

The parameters type, 1b, and ub specify the type, lower bound, and upper bound,
respectively, as follows:

Type Bounds Comment
LPX_FR —oo < x < +oo Free (unbounded) variable
LPX_LO lb<zx < +4+oo Variable with lower bound
LPX_UP —oo <z < ub Variable with upper bound
LPX_DB b<x<ub Double-bounded variable
LPX_FX b=z =ub Fixed variable

where x is the auxiliary variable associated with i-th row.

If the row has no lower bound, the parameter 1b is ignored. If the row has no upper
bound, the parameter ub is ignored. If the row is an equality constraint (i.e. the cor-
responding auxiliary variable is of fixed type), only the parameter 1b is used while the
parameter ub is ignored.

2.2.10 1lpx_set_col bnds — set (change) column bounds
Synopsis

#include "glpk.h"
void lpx_set_col_bnds(LPX *lp, int j, int type, double 1lb, double ub);
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Description The routine 1px_set_col_bnds sets (changes) the type and bounds of j-th
column (structural variable) of the specified problem object.

The parameters type, 1b, and ub specify the type, lower bound, and upper bound,
respectively, as follows:

Type Bounds Comment
LPX_FR —o0o < z < +oo Free (unbounded) variable
LPX_LO Ib<x < +4+oo Variable with lower bound
LPX_UP —oo<z <ub Variable with upper bound
LPX_DB b<z<ub Double-bounded variable
LPX_FX Ib=x =ub Fixed variable

where x is the structural variable associated with j-th column.

If the column has no lower bound, the parameter 1b is ignored. If the column has
no upper bound, the parameter ub is ignored. If the column is of fixed type, only the
parameter 1b is used while the parameter ub is ignored.

2.2.11 1lpx set obj coef — set (change) objective coefficient or constant
term

Synopsis

#include "glpk.h"
void lpx_set_obj_coef (LPX *lp, int j, double coef);

Description The routine 1px_set_obj_coef sets (changes) the objective coefficient at
j-th column (structural variable). A new value of the objective coefficient is specified by
the parameter coef.

If the parameter j is 0, the routine sets (changes) the constant term (“shift”) of the
objective function.

2.2.12 1lpx_set mat_row — set (replace) row of the constraint matrix
Synopsis

#include "glpk.h"
void lpx_set_mat_row(LPX *1lp, int i, int len, int ind[], double val[l);

Description The routine 1px_set_mat_row stores (replaces) the contents of i-th row
of the constraint matrix of the specified problem object.

Column indices and numerical values of new row elements must be placed in locations
ind[1], ..., ind[len] and val[1], ..., val[len], respectively, where 0 < len < n is the
new length of i-th row, n is the current number of columns in the problem object. Note
that zero elements as well as elements with identical column indices are not allowed.

If the parameter len is 0, the parameters ind and/or val can be specified as NULL.
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2.2.13 1px_set mat col — set (replace) column of the constraint matrix
Synopsis

#include "glpk.h"
void lpx_set_mat_col(LPX *1lp, int j, int len, int ind[], double valll);

Description The routine 1px_set_mat_col stores (replaces) the contents of j-th col-
umn of the constraint matrix of the specified problem object.

Row indices and numerical values of new column elements must be placed in locations
ind[1], ..., ind[len] and val[1l], ..., val[len], respectively, where 0 < len < m is
the new length of j-th column, m is the current number of rows in the problem object.
Note that zero elements as well as elements with identical row indices are not allowed.

If the parameter len is 0, the parameters ind and/or val can be specified as NULL.

2.2.14 1lpx_load matrix — load (replace) the whole constraint matrix
Synopsis

#include "glpk.h"
void lpx_load_matrix(LPX *lp, int ne, int ia[], int ja[], double ar[]);

Description The routine 1px_load_matrix loads the constraint matrix passed in the
arrays ia, ja, and ar into the specified problem object. Before loading the current contents
of the constraint matrix is destroyed.

Constraint coefficients (elements of the constraint matrix) must be specified as triplets
(ialk], jalk]l, ar[k]) for £ = 1,...,ne, where ia[k] is the row index, jal[k] is the
column index, and ar [k] is a numeric value of corresponding constraint coefficient. The
parameter ne specifies the total number of (non-zero) elements in the matrix to be loaded.
Note that coefficients with identical indices as well as zero coefficients are not allowed.

If the parameter ne is 0, the parameters ia, ja, and/or ar can be specified as NULL.

2.2.15 1lpx. del rows — delete rows from problem object
Synopsis

#include "glpk.h"
void lpx_del_rows(LPX #1lp, int nrs, int num[]);

Description The routine 1px_del_rows deletes specified rows from a problem object,
which the parameter 1p points to. Ordinal numbers of rows to be deleted must be placed
in locations num[1], ..., num[nrs], where nrs > 0.

Note that deleting rows involves changing ordinal numbers of other rows remaining
in the problem object. New ordinal numbers of the remaining rows are assigned under
the assumption that the original order of rows is not changed. Let, for example, before
deletion there be five rows a, b, ¢, d, e with ordinal numbers 1, 2, 3, 4, 5, and let rows b
and d have been deleted. Then after deletion the remaining rows a, ¢, e are assigned new
oridinal numbers 1, 2, 3.
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2.2.16 1px. del cols — delete columns from problem object
Synopsis

#include "glpk.h"
void 1lpx_del_cols(LPX *lp, int ncs, int num[]);

Description The routine 1px_del_cols deletes specified columns from a problem ob-
ject, which the parameter 1p points to. Ordinal numbers of columns to be deleted must
be placed in locations num[1], ..., num[ncs], where ncs > 0.

Note that deleting columns involves changing ordinal numbers of other columns re-
maining in the problem object. New ordinal numbers of the remaining columns are as-
signed under the assumption that the original order of columns is not changed. Let, for
example, before deletion there be six columns p, ¢, r, s, t, u with ordinal numbers 1, 2,
3,4, 5, 6, and let columns p, g, s have been deleted. Then after deletion the remaining
columns r, ¢, u are assigned new ordinal numbers 1, 2, 3.

2.2.17 1px._delete_prob — delete problem object
Synopsis

#include "glpk.h"

void lpx_delete_prob(LPX *1p);

Description The routine 1px_delete_prob deletes a problem object, which the param-
eter 1p points to, freeing all the memory allocated to this object.
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2.3 Problem retrieving routines

2.3.1 1lpx_get_prob_name — retrieve problem name
Synopsis

#include "glpk.h"

char *1px_get_prob_name(LPX *1p);

Returns The routine 1px_get_prob_name returns a pointer to an internal buffer, which
contains symbolic name of the problem. However, if the problem has no assigned name,
the routine returns NULL.

2.3.2 1lpx_get_obj_name — retrieve objective function name
Synopsis

#include "glpk.h"

char *1lpx_get_obj_name(LPX *1p);

Returns The routine 1px_get_obj_name returns a pointer to an internal buffer, which
contains symbolic name assigned to the objective function. However, if the objective
function has no assigned name, the routine returns NULL.

2.3.3 1lpx_get obj.dir — retrieve optimization direction flag
Synopsis

#include "glpk.h"
int 1lpx_get_obj_dir(LPX *1p);

Returns The routine lpx_get_obj_dir returns the optimization direction flag (i.e.
“sense” of the objective function):

LPX_MIN minimization;

LPX_MAX maximization.

2.3.4 1lpx_get_num rows — retrieve number of rows
Synopsis
#include "glpk.h"

int lpx_get_num_rows(LPX *1p);

Returns The routine lpx_get_num_rows returns the current number of rows in the
specified problem object.
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2.3.5 1px_get_num cols — retrieve number of columns
Synopsis
#include "glpk.h"

int lpx_get_num_cols(LPX *1p);

Returns The routine lpx_get_num_cols returns the current number of columns the
specified problem object.

2.3.6 1lpx_get_row name — retrieve row name
Synopsis
#include "glpk.h"

char *1lpx_get_row_name(LPX *1lp, int i);

Returns The routine 1px_get_row_name returns a pointer to an internal buffer, which
contains a symbolic name assigned to i-th row. However, if the row has no assigned name,
the routine returns NULL.

2.3.7 1lpx get_col name — retrieve column name
Synopsis

#include "glpk.h"

char *lpx_get_col_name(LPX *lp, int j);

Returns The routine 1px_get_col_name returns a pointer to an internal buffer, which
contains a symbolic name assigned to j-th column. However, if the column has no assigned
name, the routine returns NULL.

2.3.8 1lpx_get_row_type — retrieve row type
Synopsis

#include "glpk.h"
int 1px_get_row_type(LPX *lp, int i);

Returns The routine 1px_get_row_type returns the type of i-th row, i.e. the type of
corresponding auxiliary variable, as follows:

LPX_FR free (unbounded) variable;

LPX_LO variable with lower bound;

LPX_UP variable with upper bound;

LPX_DB double-bounded variable;

LPX_FX fixed variable.
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2.3.9 1lpx_get_row 1lb — retrieve row lower bound
Synopsis

#include "glpk.h"

double lpx_get_row_lb(LPX *1lp, int i);

Returns The routine 1lpx_get_row_1b returns the lower bound of i-th row, i.e. the
lower bound of corresponding auxiliary variable. However, if the row has no lower bound,
the routine returns zero.

2.3.10 1lpx_get_row.ub — retrieve row upper bound
Synopsis

#include "glpk.h"

double lpx_get_row_ub(LPX *1lp, int i);

Returns The routine 1px_get_row_ub returns the upper bound of i-th row, i.e. the
upper bound of corresponding auxiliary variable. However, if the row has no upper bound,
the routine returns zero.

2.3.11 1px_get_col_type — retrieve column type
Synopsis

#include "glpk.h"
int lpx_get_col_type(LPX *1lp, int j);

Returns The routine 1px_get_col_type returns the type of j-th column, i.e. the type
of corresponding structural variable, as follows:

LPX_FR free (unbounded) variable;

LPX_LO variable with lower bound;

LPX_UP variable with upper bound;

LPX_DB double-bounded variable;

LPX_FX fixed variable.

2.3.12 1lpx get_col 1lb — retrieve column lower bound
Synopsis

#include "glpk.h"

double lpx_get_col_1b(LPX *1lp, int j);

Returns The routine 1px_get_col_1b returns the lower bound of j-th column, i.e. the
lower bound of corresponding structural variable. However, if the column has no lower
bound, the routine returns zero.
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2.3.13 1px_get_col_ub — retrieve column upper bound
Synopsis

#include "glpk.h"

double lpx_get_col_ub(LPX *lp, int j);

Returns The routine 1px_get_col_ub returns the upper bound of j-th column, i.e. the
upper bound of corresponding structural variable. However, if the column has no upper
bound, the routine returns zero.

2.3.14 1lpx get_obj_coef — retrieve objective coeflicient or constant term
Synopsis

#include "glpk.h"
double lpx_get_obj_coef (LPX *1lp, int j);

Returns The routine 1px_get_obj_coef returns the objective coefficient at j-th struc-
tural variable (column).

If the parameter j is 0, the routine returns the constant term (“shift”) of the objective
function.

2.3.15 1lpx_get num nz — retrieve number of constraint coefficients
Synopsis

#include "glpk.h"

int lpx_get_num_nz(LPX *1p);

Returns The routine 1px_get_num_nz returns the number of non-zero elements in the
constraint matrix of the specified problem object.

2.3.16 1lpx get mat row — retrieve row of the constraint matrix
Synopsis

#include "glpk.h"
int 1lpx_get_mat_row(LPX *1lp, int i, int ind[], double vall[l);

Description The routine 1px_get_mat_row scans (non-zero) elements of i-th row of the
constraint matrix of the specified problem object and stores their column indices and nu-
meric values to locations ind[1], ..., ind[len] and val[1], ..., val[len], respectively,
where 0 < len < n is the number of elements in ¢-th row, n is the number of columns.

The parameter ind and/or val can be specified as NULL, in which case corresponding
information is not stored.
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Returns The routine lpx_get_mat_row returns the length len, i.e. the number of
(non-zero) elements in i-th row.

2.3.17 1lpx_get mat_col — retrieve column of the constraint matrix
Synopsis

#include "glpk.h"
int 1lpx_get_mat_col(LPX *1lp, int j, int ind[], double vall[l);

Description The routine 1px_get_mat_col scans (non-zero) elements of j-th column
of the constraint matrix of the specified problem object and stores their row indices and
numeric values to locations ind[1], ..., ind[len] and val[1], ..., val[len], respec-
tively, where 0 < len < m is the number of elements in j-th column, m is the number of
rOWS.

The parameter ind and/or val can be specified as NULL, in which case corresponding
information is not stored.

Returns The routine lpx_get_mat_col returns the length len, i.e. the number of
(non-zero) elements in j-th column.
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2.4 Problem scaling routines

2.4.1 1px_scale prob — scale problem data
Synopsis

#include "glpk.h"
void lpx_scale_prob(LPX *1p);

Description The routine 1px_scale_prob performs scaling of problem data for the
specified problem object.

The purpose of scaling is to provide such scaling (diagonal) matrices R and S that
the scaled constraint matrix A’ = RAS has better numerical properties than the original
constraint matrix A.

Note that the scaling matrices R and S are used only by the solver. On API level the
scaling is invisible, since all data stored in the problem object are non-scaled.

2.4.2 1px unscale prob — unscale problem data
Synopsis

#include "glpk.h"
void lpx_unscale_prob(LPX *1p);

The routine 1px_unscale_prob performs unscaling of problem data for the specified
problem object.

“Unscaling” means replacing the current scaling matrices R and S by unity matrices
that cancels the scaling effect.
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2.5 LP basis constructing routines

2.5.1 1px_std_basis — construct standard initial LP basis
Synopsis

#include "glpk.h"
void lpx_std_basis(LPX *1p);

Description The routine 1px_std_basis constructs the “standard” (trivial) initial LP
basis for the specified problem object.

In the “standard” LP basis all auxiliary variables (rows) are basic, and all structural
variables (columns) are non-basic (so the corresponding basis matrix is unity).

2.5.2 1px.adv_basis — construct advanced initial LP basis
Synopsis

#include "glpk.h"
void lpx_adv_basis(LPX *1p);

Description The routine lpx_adv_basis build an advanced initial LP basis for the
specified problem object.

In order to construct the advanced initial LP basis the routine does the following:

1) includes in the basis all non-fixed auxiliary variables;

2) includes in the basis as many non-fixed structural variables as possible keeping
triangular form of the basis matrix;

3) includes in the basis appropriate (fixed) auxiliary variables to complete the basis.

As a result the initial LP basis has as few fixed variables as possible and the corre-
sponding basis matrix is triangular.

2.5.3 1lpx_set_row_stat — set (change) row status
Synopsis

#include "glpk.h"
void lpx_set_row_stat(LPX *lp, int i, int stat);

Description The routine lpx_set_row_stat sets (changes) the current status of i-th
row (auxiliary variable) as specified by the parameter stat:

LPX_BS make the row basic (make the constraint inactive);

LPX_NL make the row non-basic (make the constraint active);

LPX_NU make the row non-basic and set it to the upper bound; if the row is not
double-bounded, this status is equivalent to LPX_NL (only in the case of this
routine);

LPX_NF the same as LPX_NL (only in the case of this routine);

LPX_NS the same as LPX_NL (only in the case of this routine).
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2.5.4 1px_set_col_stat — set (change) column status
Synopsis

#include "glpk.h"
void lpx_set_col_stat(LPX *lp, int j, int stat);

Description The routine 1px_set_col_stat sets (changes) the current status of j-th
column (structural variable) as specified by the parameter stat:

LPX_BS make the column basic;

LPX_NL make the column non-basic;

LPX_NU make the column non-basic and set it to the upper bound; if the column is
not double-bounded, this status is equivalent to LPX_NL (only in the case of
this routine);

LPX_NF the same as LPX_NL (only in the case of this routine);

LPX_NS the same as LPX_NL (only in the case of this routine).
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2.6 Simplex method routine

2.6.1 1lpx_simplex — solve LP problem using the simplex method
Synopsis

#include "glpk.h"
int lpx_simplex(LPX *1p);

Description The routine lpx_simplex is an interface to an LP problem solver based
on the two-phase revised simplex method.

This routine obtains problem data from the problem object, which the parameter 1p
points to, calls the solver to solve the LP problem, and stores an obtained basic solution
and other relevant information back into the problem object.

Since solving of large-scale problems may take a long time, the solver reports some
information about the current basic solution, which is sent to the standard output. This
information has the following format:

*nnn: objval = xxx  infeas = yyy (ddd)

where: ‘nnn’ is the iteration number, ‘xxx’ is the current value of the objective function
(which is unscaled and has correct sign), ‘yyy’ is the current sum of primal infeasibilities
(which is scaled and therefore may be used for visual estimating only), ‘ddd’ is the current
number of fixed basic variables. If the asterisk ‘*’ precedes to ‘nnn’, the solver is searching
for an optimal solution (phase II), otherwise the solver is searching for a primal feasible
solution (phase I).

Note that the simplex solver currently implemented in GLPK is not perfect. Although
it has been successfully tested on a wide set of LP problems, there are hard problems,
which cannot be solved by the GLPK simplex solver.

Using built-in LP presolver The simplex solver has built-in LP presolver, which is
a subprogram that transforms the original LP problem specified in the problem object
to an equivalent LP problem, which may be easier for solving with the simplex method
than the original one. This is attained mainly due to reducing the problem size and
improving its numeric properties (for example, by removing some inactive constraints or
by fixing some non-basic variables). Once the transformed LP problem has been solved,
the presolver transforms its basic solution back to a corresponding basic solution of the
original problem.

Presolving is an optional feature of the routine lpx_simplex, and by default it is
disabled. In order to enable the LP presolver the user should set the control parameter
LPX_K_PRESOL on (see Subsection 2.11.6, page 54) before calling the routine 1px_simplex.
As a rule presolving is useful when the problem is solved for the first time, and it is not
recommended to use presolving when the problem should be re-optimized.

The presolving procedure is transparent to the API user in the sense that all necessary
processing is performed internally, and a basic solution of the original problem recovered
by the presolver is the same as if it were computed directly, i.e. without presolving.
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Note that the presolver is able to recover only optimal solutions. If a computed solution
is infeasible or non-optimal, the corresponding solution of the original problem cannot be
recovered and therefore remains undefined. If the user needs to know a basic solution even
if it is infeasible or non-optimal, the presolver must be disabled.

Returns If the LP presolver is disabled (the flag LPX_K_PRESOL is off), the routine
lpx_simplex returns one of the following exit codes:

LPX_E_OK

LPX_E_FAULT

LPX_E_OBJLL

LPX_E_0BJUL

LPX_E_ITLIM

LPX_E_TMLIM

LPX_E_SING

the LP problem has been successfully solved. (Note that, for exam-
ple, if the problem has no feasible solution, this exit code is reported.)
unable to start the search because either the problem has no
rows/columns, or the initial basis is invalid, or the initial basis matrix
is singular or ill-conditioned.

the search was prematurely terminated because the objective func-
tion being maximized has reached its lower limit and continues de-
creasing (the dual simplex only).

the search was prematurely terminated because the objective func-
tion being minimized has reached its upper limit and continues in-
creasing (the dual simplex only).

the search was prematurely terminated because the simplex itera-
tions limit has been exceeded.

the search was prematurely terminated because the time limit has
been exceeded.

the search was prematurely terminated due to the solver failure (the
current basis matrix got singular or ill-conditioned).

If the LP presolver is enabled (the flag LPX_K_PRESOL is on), the routine 1px_simplex
returns one of the following exit codes:

LPX_E_OK
LPX_E_FAULT
LPX_E_NOPFS
LPX_E_NODFS
LPX_E_ITLIM
LPX_E_TMLIB
LPX_E_SING

optimal solution of the LP problem has been found.
the LP problem has no rows and/or columns.

the LP problem has no primal feasible solution.

the LP problem has no dual feasible solution.

same as above.

same as above.

same as above.
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2.7 Basic solution retrieving routines

2.7.1 1lpx get_status — retrieve generic status of basic solution
Synopsis

#include "glpk.h"
int 1lpx_get_status(LPX *lp);

Returns The routine 1px_get_status reports the generic status of the current basic
solution for the specified problem object as follows:

LPX_OPT solution is optimal;

LPX_FEAS solution is feasible;

LPX_INFEAS solution is infeasible;

LPX_NOFEAS problem has no feasible solution;

LPX_UNBND  problem has unbounded solution;

LPX_UNDEF  solution is undefined.

More detailed information about the status of basic solution can be retrieved using
the routines 1px_get_prim_stat and lpx_get_dual_stat.

2.7.2 1lpx get prim stat — retrieve primal status of basic solution
Synopsis

#include "glpk.h"
int lpx_get_prim_stat(LPX *1p);

Returns The routine 1px_get_prim_stat reports the primal status of the basic solution
for the specified problem object as follows:

LPX_P_UNDEF  primal solution is undefined;

LPX_P_FEAS solution is primal feasible;

LPX_P_INFEAS solution is primal infeasible;

LPX_P_NOFEAS mno primal feasible solution exists.

2.7.3 1lpx_get_dual stat — retrieve dual status of basic solution
Synopsis

#include "glpk.h"
int 1lpx_get_dual_stat(LPX *1p);

Returns The routine 1px_get_dual_stat reports the dual status of the basic solution
for the specified problem object as follows:

LPX_D_UNDEF  dual solution is undefined;

LPX_D_FEAS solution is dual feasible;

LPX_D_INFEAS solution is dual infeasible;

LPX_D_NOFEAS no dual feasible solution exists.
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2.7.4 1lpx_get_obj_val — retrieve objective value

Synopsis

#include "glpk.h"
double lpx_get_obj_val(LPX *1p);

Returns The routine 1px_get_obj_val returns current value of the objective function.

2.7.5 1px_get_row_stat — retrieve row status

Synopsis

#include "glpk.h"
int lpx_get_row_stat(LPX *1lp, int i);

Returns The routine 1px_get_row_stat returns current status assigned to the auxiliary

variable associated with i-th row as follows:
LPX_BS basic variable;

LPX_NL non-basic variable on its lower bound;
LPX_NU non-basic variable on its upper bound;
LPX_NF non-basic free (unbounded) variable;
LPX_NS non-basic fixed variable.

2.7.6 1lpx get row prim — retrieve row primal value

Synopsis

#include "glpk.h"
double lpx_get_row_prim(LPX *1lp, int i);

Returns The routine lpx_get_row_prim returns primal value of the auxiliary variable
associated with i-th row.

2.7.7 1px_get_row.dual — retrieve row dual value

Synopsis

#include "glpk.h"
double lpx_get_row_dual(LPX *lp, int i);

Returns The routine 1px_get_row_dual returns dual value (i.e. reduced cost) of the
auxiliary variable associated with i-th row.
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2.7.8 1lpx_get_col_stat — retrieve column status

Synopsis

#include "glpk.h"
int lpx_get_col_stat(LPX *lp, int j);

Returns The routine 1lpx_get_col_stat returns current status assigned to the struc-
tural variable associated with j-th column as follows:

LPX_BS basic variable;

LPX_NL non-basic variable on its lower bound;

LPX_NU non-basic variable on its upper bound;

LPX_NF non-basic free (unbounded) variable;

LPX_NS non-basic fixed variable.

2.7.9 1lpx_get_col prim — retrieve column primal value

Synopsis

#include "glpk.h"
double lpx_get_col_prim(LPX *lp, int j);

Returns The routine 1px_get_col_prim returns primal value of the structural variable
associated with j-th column.

2.7.10 1lpx_get_col_ dual — retrieve column dual value

Synopsis

#include "glpk.h"
double lpx_get_col_dual(LPX *lp, int j);

Returns The routine 1px_get_col_dual returns dual value (i.e. reduced cost) of the
structural variable associated with j-th column.

2.7.11 1lpx get_ray info — retrieve non-basic variable which causes un-
boundness

Synopsis

#include "glpk.h"
int 1lpx_get_ray_info(LPX *1p);
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Returns The routine 1px_get_ray_info returns the number k of some non-basic vari-
able zj, which causes primal unboundness. If such a variable cannot be identified, the
routine returns zero.

If 1 <k <m, xy is k-th auxiliary variable, and if m+1 < k < m+mn, xj is (k—m)-th
structural variable, where m is the number of rows, n is the number of columns in the
specified problem object.

“Unboundness” means that the variable xj, is non-basic and able to infinitely change
in a feasible direction improving the objective function.

2.7.12 1lpx_check kkt — check Karush-Kuhn-Tucker conditions

Synopsis

#include "glpk.h"
void lpx_check_kkt(LPX *1p, int scaled, LPXKKT *kkt);

Description The routine 1px_check_kkt checks Karush-Kuhn-Tucker optimality con-
ditions for basic solution. It is assumed that both primal and dual components of basic
solution are valid.

If the parameter scaled is zero, the optimality conditions are checked for the original,
unscaled LP problem. Otherwise, if the parameter scaled is non-zero, the routine checks
the conditions for an internally scaled LP problem.

The parameter kkt is a pointer to the structure LPXKKT, to which the routine stores
the results of checking. Members of this structure are shown in the table below.

Condition | Member Comment

(KKT.PE) | pe_ae_max | Largest absolute error
pe_ae_row | Number of row with largest absolute error
pe_re_max | Largest relative error
pe_re_row | Number of row with largest relative error
pe_quality | Quality of primal solution

(KKT.PB) | pb_ae_max | Largest absolute error
pb_ae_ind | Number of variable with largest absolute error
pb_re_max | Largest relative error
pb_re_ind | Number of variable with largest relative error
pb_quality | Quality of primal feasibility

(KKT.DE) | de_ae_max | Largest absolute error
de_ae_col | Number of column with largest absolute error
de_re_max | Largest relative error
de_re_col | Number of column with largest relative error
de_quality | Quality of dual solution

(KKT.DB) | db_ae_max | Largest absolute error
db_ae_ind | Number of variable with largest absolute error
db_re_max | Largest relative error
db_re_ind | Number of variable with largest relative error
db_quality | Quality of dual feasibility

The routine performs all computations using only components of the given LP problem
and the current basic solution.
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Background The first condition checked by the routine is:
xr— Axg =0, (KKT.PE)

where zp is the subvector of auxiliary variables (rows), xg is the subvector of structural
variables (columns), A is the constraint matrix. This condition expresses the requirement
that all primal variables must satisfy to the system of equality constraints of the original
LP problem. In case of exact arithmetic this condition would be satisfied for any basic
solution; however, in case of inexact (floating-point) arithmetic, this condition shows how
accurate the primal basic solution is, that depends on accuracy of a representation of the
basis matrix used by the simplex method routines.

The second condition checked by the routine is:

h<zp<wug forallk=1,...,m+n, (KKT.PB)

where xy is auxiliary (1 < k < m) or structural (m + 1 < k < m + n) variable, l; and
uy, are, respectively, lower and upper bounds of the variable zj, (including cases of infinite
bounds). This condition expresses the requirement that all primal variables must satisfy
to bound constraints of the original LP problem. Since in case of basic solution all non-
basic variables are placed on their bounds, actually the condition (KKT.PB) needs to be
checked for basic variables only. If the primal basic solution has sufficient accuracy, this
condition shows primal feasibility of the solution.

The third condition checked by the routine is:

grad Z = ¢ = (A)Tr + d,
where Z is the objective function, ¢ is the vector of objective coefficients, (A)” is a matrix
transposed to the expanded constraint matrix A = (I| — A), m is a vector of Lagrange
multipliers that correspond to equality constraints of the original LP problem, d is a
vector of Lagrange multipliers that correspond to bound constraints for all (auxiliary
and structural) variables of the original LP problem. Geometrically the third condition
expresses the requirement that the gradient of the objective function must belong to
the orthogonal complement of a linear subspace defined by the equality and active bound
constraints, i.e. that the gradient must be a linear combination of normals to the constraint
planes, where Lagrange multipliers = and d are coefficients of that linear combination.
To eliminate the vector 7 the third condition can be rewritten as:

()= ()« (2)

T+ dgr = CR,
—AT7T+d5 = Cg.

or, equivalently:

Then substituting the vector 7 from the first equation into the second one we have:
AT(dR — cg) + (ds — ¢cs) = 0, (KKT.DE)

where dp is the subvector of reduced costs of auxiliary variables (rows), dg is the subvector
of reduced costs of structural variables (columns), cg and cg are subvectors of objective
coefficients at, respectively, auxiliary and structural variables, AT is a matrix transposed
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to the constraint matrix of the original LP problem. In case of exact arithmetic this con-

dition would be satisfied for any basic solution; however, in case of inexact (floating-point)

arithmetic, this condition shows how accurate the dual basic solution is, that depends on

accuracy of a representation of the basis matrix used by the simplex method routines.
The last, fourth condition checked by the routine is:

di =0, if xj, is basic or free non-basic variable
0 < dj < oo if % is non-basic on its lower (minimization)
or upper (maximization) bound

KKT.DB
—oo < dp <0 if x, is non-basic on its upper (minimization) ( )
or lower (maximization) bound
—00 < d, < +o0o if x;, is non-basic fixed variable
for all k = 1,...,m + n, where dj, is a reduced cost (Lagrange multiplier) of auxiliary

(1 <k <m) or structural (m+ 1 < k < m + n) variable ;. Geometrically this condition
expresses the requirement that constraints of the original problem must ”hold” the point
preventing its movement along the anti-gradient (in case of minimization) or the gradient
(in case of maximization) of the objective function. Since in case of basic solution re-
duced costs of all basic variables are placed on their (zero) bounds, actually the condition
(KKT.DB) needs to be checked for non-basic variables only. If the dual basic solution has
sufficient accuracy, this condition shows dual feasibility of the solution.

Should note that the complete set of Karush-Kuhn-Tucker optimality conditions also
includes the fifth, so called complementary slackness condition, which expresses the re-
quirement that at least either a primal variable x; or its dual counterpart dy must be on
its bound for all £ = 1,...,m 4+ n. However, being always satisfied by definition for any
basic solution that condition is not checked by the routine.

To check the first condition (KKT.PE) the routine computes a vector of residuals:

g =g — Axg,

determines component of this vector that correspond to largest absolute and relative errors:

€e_ae_maX — Imax ;
P max. |94l

a9l
1<i<m 1 + ’(1'3)1’7
and stores these quantities and corresponding row indices to the structure LPXKKT.
To check the second condition (KKT.PB) the routine computes a vector of residuals:

pe_re_max =

0, if I <xp <wuy
hy = xp — i, if o <l
T — Uk, if T > ug

for all kK =1,...,m + n, determines components of this vector that correspond to largest
absolute and relative errors:

pb_ae_max = max |hgl,
1<k<m-+n

||

pb_re_max = max ————,
1<k<m+n 1 + |xg]

and stores these quantities and corresponding variable indices to the structure LPXKKT.
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To check the third condition (KKT.DE) the routine computes a vector of residuals:
U = AT(dR —cr) + (ds — cs),

determines components of this vector that correspond to largest absolute and relative
errors:

de_ae_max = max |ujl,
1<j<n

de_re_max = max

and stores these quantities and corresponding column indices to the structure LPXKKT.
To check the fourth condition (KKT.DB) the routine computes a vector of residuals:

o — 0, if dj has correct sign
¥ dg, if dj, has wrong sign

for all k =1,...,m+ n, determines components of this vector that correspond to largest
absolute and relative errors:

db_ae_max = max |vgl,
1<k<m+n

db _ _fwl
_re_max = max )

1<k<m+n 1 + ’dk — Ck|

and stores these quantities and corresponding variable indices to the structure LPXKKT.

Using the relative errors for all the four conditions the routine lpx_check_kkt also
estimates a ”quality” of the basic solution from the standpoint of these conditions and
stores corresponding quality indicators to the structure LPXKKT:

pe_quality — quality of primal solution;

pb_quality — quality of primal feasibility;

de_quality — quality of dual solution;

db_quality — quality of dual feasibility.

Each of these indicators is assigned to one of the following four values:

’H’ means high quality,

’M’ means medium quality,

’L’ means low quality, or

7> means wrong or infeasible solution.

If all the indicators show high or medium quality (for an internally scaled LP problem,
i.e. when the parameter scaled in a call to the routine 1px_check_kkt is non-zero), the
user can be sure that the obtained basic solution is quite accurate.

If some of the indicators show low quality, the solution can still be considered as
relevant, though an additional analysis is needed depending on which indicator shows low
quality.

If the indicator pe_quality is assigned to ’7’, the primal solution is wrong. If the
indicator de_quality is assigned to >7’, the dual solution is wrong.

If the indicator db_quality is assigned to ’7’ while other indicators show a good
quality, this means that the current basic solution being primal feasible is not dual feasible.
Similarly, if the indicator pb_quality is assigned to ’7’ while other indicators are not,
this means that the current basic solution being dual feasible is not primal feasible.
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2.8 LP basis and simplex table routines

2.8.1 lpx.warmup — “warm up” LP basis
Synopsis

#include "glpk.h"
int lpx_warm_up(LPX *1p);

Description The routine 1px_warm_up “warms up” the LP basis for the specified prob-
lem object using current statuses assigned to rows and columns (i.e. to auxiliary and
structural variables).

“Warming up” includes reinverting (factorizing) the basis matrix (if neccesary), com-
puting primal and dual components as well as determining primal and dual statuses of
the basic solution.

Returns The routine 1lpx_warm_up returns one of the following exit codes:
LPX_E_OK the LP basis has been successfully “warmed up”.
LPX_E_EMPTY  the problem has no rows and/or no columns.
LPX_E_BADB the LP basis is invalid, because the number of basic variables is not
the same as the number of rows.
LPX_E_SING the basis matrix is numerically singular or ill-conditioned.

2.8.2 1px_eval_tab_row — compute row of the simplex table
Synopsis

#include "glpk.h"
int lpx_eval_tab_row(LPX *lp, int k, int ind[], double vall[]);

Description The routine lpx_eval_tab_row computes a row of the current simplex
table for the basic variable, which is specified by the number k: if 1 < k < m, x is k-th
auxiliary variable; if m +1 < k < m 4+ n, x is (k — m)-th structural variable, where m is
the number of rows, n is the number of columns. The current basis must be available.

The routine stores column indices and numerical values of non-zero elements of the
computed row in sparse format to locations ind[1], ..., ind[len] and vall1l], ...,
val[len], respectively, where 0 < len < n is the number of non-zeros returned on exit.

Element indices stored in the array ind have the same sense as the index k, i.e. indices
1 to m denote auxiliary variables and indices m + 1 to m + n denote structural ones (all
these variables are non-basic by definition).

The computed row shows how the specified basic variable z; = (zp); depends on
non-basic variables:

()i = ain(zn)1 + aie(zn)2 + ... + Qin(TN)n,

where o;; are elements of the simplex table row, (zy); are non-basic (auxiliary and struc-
tural) variables.
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Returns The routine 1px_eval_tab_row returns the number of non-zero elements in
the simplex table row stored in the arrays ind and val.

2.8.3 1lpx_eval_tab_col — compute column of the simplex table
Synopsis

#include "glpk.h"
int lpx_eval_tab_col(LPX *lp, int k, int ind[], double val[]);

Description The routine 1px_eval_tab_col computes a column of the current simplex
table for the non-basic variable, which is specified by the number k: if 1 < k < m, xp is
k-th auxiliary variable; if m + 1 < k < m + n, zy, is (k — m)-th structural variable, where
m is the number of rows, n is the number of columns. The current basis must be valid.

The routine stores row indices and numerical values of non-zero elements of the com-
puted column in sparse format to locations ind[1], ..., ind[len] and valli], ...,
val[len], respectively, where 0 < len < m is the number of non-zeros returned on
exit.

FElement indices stored in the array ind have the same sense as the index k, i.e. indices
1 to m denote auxiliary variables and indices m + 1 to m + n denote structural ones (all
these variables are basic by definition).

The computed column shows how the basic variables depend on the specified non-basic
variable zj = (zn);:

(333)1 :...—l-Oélj(SUN)j—f-..
(.%'B)Q :...—I—Oégj(x]v)j—i—..
(@B)m = .t Comg(an)j

where «;; are elements of the simplex table column, (xp); are basic (auxiliary and struc-
tural) variables.

Returns The routine 1px_eval_tab_col returns the number of non-zero elements in
the simplex table column stored in the arrays ndx and val.

2.8.4 1lpx_transform row — transform explicitly specified row
Synopsis
#include "glpk.h"

int lpx_transform_row(LPX *lp, int len, int ind[], double val[]);

Description The routine lpx_transform_row performs the same operation as the rou-
tine 1lpx_eval_tab_row, except that the transformed row is specified explicitly.
The explicitly specified row may be thought as a linear form:

T = a1Tmi1 + @2Tmao + ... + AGpTmin, (1)

where z is an auxiliary variable for this row, a; are coefficients of the linear form, x,,;
are structural variables.
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On entry column indices and numerical values of non-zero coefficients a; of the
transformed row should be placed in locations ind[1], ..., ind[len] and vall[1], ...,
val[len], where len is number of non-zero coefficients.

This routine uses the system of equality constraints and the current basis in order
to express the auxiliary variable  in (1) through the current non-basic variables (as if
the transformed row were added to the problem object and the auxiliary variable x were
basic), i.e. the resultant row has the form:

r=a1(zy)1 + a2(zn)2 + ... + an(TN)n, (2)

where o are influence coefficients, (xy); are non-basic (auxiliary and structural) variables,
n is number of columns in the specified problem object.

On exit the routine stores indices and numerical values of non-zero coefficients «; of
the resultant row (2) in locations ind[1], ..., ind[len’] and val[1], ..., val[len’],
where 0 < len’ < n is the number of non-zero coefficients in the resultant row returned by
the routine. Note that indices of non-basic variables stored in the array ind correspond to
original ordinal numbers of variables: indices 1 to m mean auxiliary variables and indices
m + 1 to m + n mean structural ones.

Returns The routine 1px_transform_row returns len’, the number of non-zero coeffi-
cients in the resultant row stored in the arrays ind and val.

2.8.5 1lpx_transform col — transform explicitly specified column
Synopsis

#include "glpk.h"
int lpx_transform_col(LPX *1lp, int len, int ind[], double vall]);

Description The routine 1px_transform_col performs the same operation as the rou-
tine 1lpx_eval_tab_col, except that the transformed column is specified explicitly.

The explicitly specified column may be thought as it were added to the original system
of equality constraints:

Tl = 011Tm+1 T ...+ G1pTmin + 1T
Ty = G21Tm+1 + ...+ Q2T+ + a2 (1)
Tm = @m1Tm+1l T -« T CpTmtn + 2

where z; are auxiliary variables, z,,;; are structural variables (presented in the problem
object), x is a structural variable for the explicitly specified column, a; are constraint
coeflicients for z.

On entry row indices and numerical values of non-zero coefficients a; of the transformed
column should be placed in locations ind[1], ..., ind[len] and val[1], ..., val[len],
where len is number of non-zero coefficients.

This routine uses the system of equality constraints and the current basis in order
to express the current basic variables through the structural variable z in (1) (as if the
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transformed column were added to the problem object and the variable « were non-basic):

(1'3)1 =...+ozx
ol @
(B)m =...+anpz

where a; are influence coefficients, zp are basic (auxiliary and structural) variables, m is
number of rows in the specified problem object.

On exit the routine stores indices and numerical values of non-zero coefficients «; of
the resultant column (2) in locations ind[1], ..., ind[len’] and val[1], ..., val[len’],
where 0 < len’ < m is the number of non-zero coefficients in the resultant column returned
by the routine. Note that indices of basic variables stored in the array ind correspond to
original ordinal numbers of variables, i.e. indices 1 to m mean auxiliary variables, indices
m + 1 to m + n mean structural ones.

Returns The routine 1px_transform_col returns len’, the number of non-zero coefhi-
cients in the resultant column stored in the arrays ind and val.

2.8.6 1lpx prim ratio_test — perform primal ratio test
Synopsis

#include "glpk.h"
int lpx_prim_ratio_test(LPX *1lp, int len, int ind[], double vall],
int how, double tol);

Description The routine 1px_prim_ratio_test performs the primal ratio test for an
explicitly specified column of the simplex table.

The primal basic solution associated with an LP problem object, which the parameter
1p points to, should be feasible. No components of the LP problem object are changed by
the routine.

The explicitly specified column of the simplex table shows how the basic variables z g
depend on some non-basic variable y (which is not necessarily presented in the problem
object):

(-TJB)I =...toy
Con = o !
(TB)m = ...+ any

The column (1) is specifed on entry to the routine using the sparse format. Ordinal
numbers of basic variables (xp); should be placed in locations ind[1], ..., ind[len],
where ordinal number 1 to m denote auxiliary variables, and ordinal numbers m + 1 to
m + n denote structural variables. The corresponding non-zero coefficients «; should be
placed in locations val[1], ..., val[len]. The arrays ind and val are not changed by
the routine.

The parameter how specifies in which direction the variable y changes on entering the
basis: +1 means increasing, —1 means decreasing.
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The parameter tol is a relative tolerance (small positive number) used by the routine
to skip small «; in the column (1).

The routine determines the ordinal number of some basic variable (among specified in
ind[1], ..., ind[len]), which reaches its (lower or upper) bound first before any other
basic variables do and which therefore should leave the basis instead the variable y in
order to keep primal feasibility, and returns it on exit. If the choice cannot be made (i.e.
if the adjacent basic solution is primal unbounded due to y), the routine returns zero.

Note If the non-basic variable y is presented in the LP problem object, the column (1)
can be computed using the routine 1px_eval_tab_col. Otherwise it can be computed
using the routine lpx_transform_col.

Returns The routine lpx_prim_ratio_test returns the ordinal number of some basic
variable (zg);, which should leave the basis instead the variable y in order to keep primal
feasibility. If the adjacent basic solution is primal unbounded and therefore the choice
cannot be made, the routine returns zero.

2.8.7 1lpx_dual ratio_test — perform dual ratio test
Synopsis

#include "glpk.h"
int lpx_dual_ratio_test(LPX #*1lp, int len, int ind[], double vall],
int how, double tol);

Description The routine 1px_dual_ratio_test performs the dual ratio test for an
explicitly specified row of the simplex table.

The dual basic solution associated with an LP problem object, which the parameter
1p points to, should be feasible. No components of the LP problem object are changed by
the routine.

The explicitly specified row of the simplex table is a linear form, which shows how some
basic variable y (not necessarily presented in the problem object) depends on non-basic
variables xn:

y=ai(zn)1 +ax(zn)2+ ...+ an(zn)n. (1)

The linear form (1) is specified on entry to the routine using the sparse format. Ordinal
numbers of non-basic variables (zx); should be placed in locations ind[1], ..., ind[len],
where ordinal numbers 1 to m denote auxiliary variables, and ordinal numbers m + 1 to
m + n denote structural variables. The corresponding non-zero coefficients «; should be
placed in locations val[1], ..., val[len]. The arrays ind and val are not changed by
the routine.

The parameter how specifies in which direction the variable y changes on leaving the
basis: +1 means increasing, —1 means decreasing.

The parameter tol is a relative tolerance (small positive number) used by the routine
to skip small a; in the form (1).

The routine determines the ordinal number of some non-basic variable (among specified
in ind[1], ..., ind[len]), whose reduced cost reaches its (zero) bound first before this
happens for any other non-basic variables and which therefore should enter the basis
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instead the variable y in order to keep dual feasibility, and returns it on exit. If the choice
cannot be made (i.e. if the adjacent basic solution is dual unbounded due to y), the routine
returns zero.

Note If the basic variable y is presented in the LP problem object, the row (1) can be
computed using the routine 1px_eval_tab_row. Otherwise it can be computed using the
routine 1px_transform_row.

Returns The routine 1px_dual_ratio_test returns the ordinal number of some non-
basic variable (xy);, which should enter the basis instead the variable y in order to keep
dual feasibility. If the adjacent basic solution is dual unbounded and therefore the choice
cannot be made, the routine returns zero.
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2.9 Interior-point method routines

2.9.1 1lpx interior — solve LP problem using the primal-dual interior-
point method

Synopsis

#include "glpk.h"
int lpx_interior (LPX #1p);

Description The routine 1lpx_interior is an interface to the LP problem solver based
on the primal-dual interior-point method.

This routine obtains problem data from the problem object, which the parameter 1p
points to, calls the solver to solve the LP problem, and stores the found solution back in
the problem object.

Interior-point methods (also known as barrier methods) are more modern and more
powerful numerical methods for large-scale linear programming. They especially fit for
very sparse LP problems and allow solving such problems much faster than the simplex
method.

Solving large LP problems may take a long time, so the routine 1lpx_interior displays
information about every interior point iteration'. This information is sent to the standard
output and has the following format:

nnn: F = fff; rpi = ppp; rdi = ddd; gap = ggg

where nnn is iteration number, ££f is the current value of the objective function (in the
case of maximization it has wrong sign), ppp is the current relative primal infeasibility,
ddd is the current relative dual infeasibility, and ggg is the current primal-dual gap.

Should note that currently the GLPK interior-point solver does not include many
important features, in particular:

it is not able to process dense columns. Thus, if the constraint matrix of the LP
problem has dense columns, the solving process will be inefficient;

it has no features against numerical instability. For some LP problems premature
termination may happen if the matrix ADAT becomes singular or ill-conditioned:;

it is not able to identify the optimal basis, which corresponds to the found interior-
point solution.

Returns The routine 1px_interior returns one of the following exit codes:
LPX_E_OK the LP problem has been successfully solved (to optimality).
LPX_E_FAULT the solver can’t start the search because either the problem has no
rows and/or no columns, or some row has non-zero objective coeffi-
cient.
LPX_E_NOFEAS the problem has no feasible (primal or dual) solution.

! Unlike the simplex method the interior point method usually needs 30—50 iterations (independently
on the problem size) in order to find an optimal solution.
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LPX_E_NOCONV  the search was prematurely terminated due to very slow convergence
or divergence.

LPX_E_ITLIM the search was prematurely terminated because the simplex itera-
tions limit has been exceeded.

LPX_E_INSTAB the search was prematurely terminated due to numerical instability
on solving Newtonian system.

2.9.2 1lpx_ipt_status — retrieve status of interior-point solution
Synopsis
#include "glpk.h"

int lpx_ipt_status(LPX *1p);

Returns The routine 1lpx_ipt_status reports the status of a solution found by the
interior-point solver as follows:
LPX_T_UNDEF interior-point solution is undefined.

LPX_T_OPT interior-point solution is optimal.
2.9.3 1lpx_ipt_obj_val — retrieve objective value
Synopsis

#include "glpk.h"
double lpx_ipt_obj_val(LPX *1p);

Returns The routine lpx_ipt_obj_val returns value of the objective function for
interior-point solution.

2.9.4 1lpx_ipt_row prim — retrieve row primal value
Synopsis
#include "glpk.h"

double lpx_ipt_row_prim(LPX *1lp, int i);

Returns The routine lpx_ipt_row_prim returns primal value of the auxiliary variable
associated with i-th row.

2.9.5 lpx_ipt_row.dual — retrieve row dual value
Synopsis

#include "glpk.h"
double lpx_ipt_row_dual(LPX *1lp, int 1i);
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Returns The routine 1px_ipt_row_dual returns dual value (i.e. reduced cost) of the
auxiliary variable associated with i-th row.

2.9.6 1lpx_ipt_col prim — retrieve column primal value
Synopsis

#include "glpk.h"

double lpx_ipt_col_prim(LPX *1lp, int j);

Returns The routine 1px_ipt_col_prim returns primal value of the structural variable
associated with j-th column.

2.9.7 1lpx_ipt_col _dual — retrieve column dual value
Synopsis

#include "glpk.h"

double lpx_ipt_col_dual(LPX *1lp, int j);

Returns The routine 1px_ipt_col_dual returns dual value (i.e. reduced cost) of the
structural variable associated with j-th column.
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2.10 MIP routines

2.10.1 1lpx set_class — set (change) problem class
Synopsis

#include "glpk.h"
void lpx_set_class(LPX *1lp, int klass);

Description The routine 1px_set_class sets (changes) the class of the problem object
as specified by the parameter klass:

LPX_LP  pure linear programming (LP) problem;

LPX_MIP mixed integer programming (MIP) problem.

2.10.2 1lpx get_class — retrieve problem class
Synopsis
#include "glpk.h"

int lpx_get_class(LPX *1p);

Returns The routine 1px_get_class returns the class of the specified problem object
LPX_LP  pure linear programming (LP) problem;
LPX_MIP mixed integer programming (MIP) problem.

2.10.3 1lpx_set_col kind — set (change) column kind
Synopsis

#include "glpk.h"
void lpx_set_col_kind(LPX *1lp, int j, int kind);

Description The routine lpx_set_col_kind sets (changes) the kind of j-th column
(structural variable) as specified by the parameter kind:

LPX_CV continuous variable;

LPX_IV integer variable.

2.10.4 1px._get_col kind — retrieve column kind
Synopsis

#include "glpk.h"
int 1lpx_get_col_kind(LPX *1p, int j);
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Returns The routine 1px_get_col_kind returns the kind of j-th column (structural
variable) as follows:

LPX_CV continuous variable;

LPX_IV integer variable.

2.10.5 1lpx_get num int — retrieve number of integer columns
Synopsis

#include "glpk.h"

int lpx_get_num_int (LPX *1p);

Returns The routine 1px_get_num_int returns the number of columns (structural vari-
ables), which are marked as integer.

2.10.6 1px_get_num bin — retrieve number of binary columns
Synopsis

#include "glpk.h"

int lpx_get_num_bin(LPX *1p);

Returns The routine 1px_get_num_bin returns the number of columns (structural vari-
ables), which are marked as integer and whose lower bound is zero and upper bound is
one.

2.10.7 1lpx_integer — solve MIP problem using the branch-and-bound
method

Synopsis

#include "glpk.h"
int lpx_integer (LPX *1p);

Description The routine 1px_integer is an interface to the MIP problem solver based
on the branch-and-bound method.

This routine obtains problem data from the problem object, which the parameter 1p
points to, calls the solver to solve the MIP problem, and stores an obtained solution and
other relevant information back in the problem object.

On entry to this routine the problem object must contain an optimal basic solution
for LP relaxation, which can be obtained by means of the simplex-based solver (see the
routine 1px_simplex).

Solving many MIP problems may take a long time, so the solver reports some informa-
tion about best known solution, which is sent to the standard output. This information
has the following format:

+nnn: mip = xxx <rho> yyy gap (ppp; 999)
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where ‘nnn’ is the simplex iteration number; ‘xxx’ is a value of the objective function for
the best known integer feasible solution (if no integer feasible solution has been found yet,
‘xxx’ is the text ‘not found yet’); ‘rho’ is the string ‘>=’ (in case of minimization) or
‘<=’ (in case of maximization); ‘yyy’ is a global bound for exact integer optimum (i.e. the
exact integer optimum is always in the range from ‘xxx’ to ‘yyy’); ‘gap’ is the relative
mip gap, in percents, computed as gap = |zzz — yyy|/(|xxx| + DBL_.EPSILON) - 100%
(if gap is greater than 999.9%, it is not printed); ‘ppp’ is the number of subproblems in
the active list, ‘qqq’ is the number of subproblems which have been already fathomed and
therefore removed from the branch-and-bound search tree.

Note that the branch-and-bound solver implemented in GLPK uses easy heuristics for
branching and backtracking, and therefore it is not perfect. Most probably this solver can
be used for solving MIP problems with one or two hundreds of integer variables. Hard or
very large scale MIP problems cannot be solved by this routine.

Returns The routine 1px_integer returns one of the following exit codes:

LPX_E_OK the MIP problem has been successfully solved. (Note that, for ex-
ample, if the problem has no integer feasible solution, this exit code
is reported.)

LPX_E_FAULT unable to start the search because either:
the problem is not of MIP class, or
the problem object doesn’t contain optimal solution for LP relax-
ation, or
some integer variable has non-integer lower or upper bound, or
some row has non-zero objective coeflicient.

LPX_E_ITLIM the search was prematurely terminated because the simplex itera-
tions limit has been exceeded.

LPX_E_TMLIM the search was prematurely terminated because the time limit has
been exceeded.

LPX_E_SING the search was prematurely terminated due to the solver failure (the
current basis matrix got singular or ill-conditioned).

2.10.8 1lpx.mip_status — retrieve status of MIP solution

Synopsis

#include "glpk.h"
int lpx_mip_status(LPX *1lp);

Returns The routine 1lpx_mip_status reports the status of a MIP solution found by

the branch-and-bound solver as follows:
LPX_I_UNDEF MIP solution is undefined.

LPX_I_OPT MIP solution is integer optimal.

LPX_I_FEAS MIP solution is integer feasible, however its optimality has not been
proven, perhaps due to premature termination of the search.

LPX_I_NOFEAS problem has no integer feasible solution (proven by the solver).
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2.10.9 1lpxmip obj_val — retrieve objective value
Synopsis

#include "glpk.h"

double lpx_mip_obj_val(LPX *1p);

Returns The routine 1px_mip_obj_val returns value of the objective function for MIP
solution.

2.10.10 1lpxmip_row._val — retrieve row value
Synopsis

#include "glpk.h"

double lpx_mip_row_val(LPX *lp, int i);

Returns The routine 1px_mip_row_val returns value of the auxiliary variable associ-
ated with i-th row.

2.10.11 1lpxmip_col_val — retrieve column value
Synopsis

#include "glpk.h"

double lpx_mip_col_val(LPX *lp, int j);

Returns The routine 1px_mip_col_val returns value of the structural variable associ-
ated with j-th column.
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2.11 Control parameters and statistics routines

2.11.1 1lpx reset_parms — reset control parameters to default values
Synopsis
#include "glpk.h"

void lpx_reset_parms(LPX *1p);

Description The routine lpx_reset_parms resets all control parameters associated
with a problem object, which the parameter 1p points to, to their default values.

2.11.2 1lpx_set_int_parm — set (change) integer control parameter
Synopsis
#include "glpk.h"

void lpx_set_int_parm(LPX *lp, int parm, int val);

Description The routine 1px_set_int_parm sets (changes) the current value of an in-
teger control parameter parm. The parameter val specifies a new value of the control
parameter.

2.11.3 1lpx_get_int_parm — query integer control parameter
Synopsis
#include "glpk.h"

int 1lpx_get_int_parm(LPX *1lp, int parm);

Returns The routine 1px_get_int_parm returns the current value of an integer control
parameter parm.

2.11.4 1px set real parm — set (change) real control parameter
Synopsis
#include "glpk.h"

void lpx_set_real_parm(LPX *lp, int parm, double val);

Description The routine 1px_set_real_parm sets (changes) the current value of a real
(floating point) control parameter parm. The parameter val specifies a new value of the
control parameter.
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2.11.5 1px_get_real parm — query real control parameter
Synopsis

#include "glpk.h"

double 1lpx_get_real_parm(LPX *1lp, int parm);

Returns The routine 1px_get_real_parm returns the current value of a real (floating
point) control parameter parm.

2.11.6 Parameter list

This subsection describes all control parameters currently implemented in the package.
Symbolic names of control parameters (which are macros defined in the header file glpk.h)
are given on the left. Types, default values, and descriptions are given on the right.

LPX_K_MSGLEV type: integer, default: 3
Level of messages output by solver routines:
0 — no output
1 — error messages only
2 — normal output
3 — full output (includes informational messages)
LPX_K_SCALE type: integer, default: 1
Scaling option:
0 — no scaling
1 — equilibration scaling
2 — geometric mean scaling
3 — geometric mean scaling, then equilibration scaling
LPX_K_DUAL type: integer, default: 0
Dual simplex option:
0 — do not use the dual simplex
1 — if initial basic solution is dual feasible, use the dual simplex
LPX_K_PRICE type: integer, default: 1
Pricing option (for both primal and dual simplex):
0 — textbook pricing
1 — steepest edge pricing
LPX_K_RELAX type: real, default: 0.07
Relaxation parameter used in the ratio test. If it is zero, the textbook
ratio test is used. If it is non-zero (should be positive), Harris’ two-
pass ratio test is used. In the latter case on the first pass of the ratio
test basic variables (in the case of primal simplex) or reduced costs of
non-basic variables (in the case of dual simplex) are allowed to slightly
violate their bounds, but not more than (RELAX - TOLBND) or (RELAX -
TOLDJ) (thus, RELAX is a percentage of TOLBND or TOLDJ).
LPX_K_TOLBND type: real, default: 1077
Relative tolerance used to check if the current basic solution is primal
feasible. (Do not change this parameter without detailed understand-
ing its purpose.)



LPX_K_TOLDJ

LPX_K_TOLPIV

LPX_K_ROUND

LPX_K_0BJLL

LPX_K_0BJUL

LPX_K_ITLIM

LPX_K_ITCNT

LPX_K_TMLIM

LPX_K_OUTFRQ

LPX_K_OUTDLY

LPX_K_BRANCH
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type: real, default: 10~7

Absolute tolerance used to check if the current basic solution is dual
feasible. (Do not change this parameter without detailed understand-
ing its purpose.)

type: real, default: 1079

Relative tolerance used to choose eligible pivotal elements of the sim-
plex table. (Do not change this parameter without detailed under-
standing its purpose.)

type: integer, default: 0

Solution rounding option:

0 — report all primal and dual values “as is”

1 — replace tiny primal and dual values by exact zero

type: real, default: -DBL_MAX

Lower limit of the objective function. If on the phase II the objective
function reaches this limit and continues decreasing, the solver stops
the search. (Used in the dual simplex only.)

type: real, default: +DBL_MAX

Upper limit of the objective function. If on the phase II the objective
function reaches this limit and continues increasing, the solver stops
the search. (Used in the dual simplex only.)

type: integer, default: —1

Simplex iterations limit. If this value is positive, it is decreased by
one each time when one simplex iteration has been performed, and
reaching zero value signals the solver to stop the search. Negative
value means no iterations limit.

type: integer, initial: 0

Simplex iterations count. This count is increased by one each time
when one simplex iteration has been performed.

type: real, default: —1.0

Searching time limit, in seconds. If this value is positive, it is de-
creased each time when one simplex iteration has been performed by
the amount of time spent for the iteration, and reaching zero value
signals the solver to stop the search. Negative value means no time
limit.

type: integer, default: 200

Output frequency, in iterations. This parameter specifies how fre-
quently the solver sends information about the solution to the standard
output.

type: real, default: 0.0

Output delay, in seconds. This parameter specifies how long the solver
should delay sending information about the solution to the standard
output. Non-positive value means no delay.

type: integer, default: 2

Branching heuristic option (for MIP only):

0 — branch on the first variable

1 — branch on the last variable

2 — branch using a heuristic by Driebeck and Tomlin
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LPX_K_BTRACK

LPX_K_TOLINT

LPX_K_TOLOBJ

LPX_K_MPSINFO

LPX_K_MPSOBJ

LPX_K_MPSORIG

LPX_K_MPSWIDE

LPX_K_MPSFREE

LPX_K_MPSSKIP

LPX_K_PRESOL

type: integer, default: 2

Backtracking heuristic option (for MIP only):

0 — depth first search

1 — breadth first search

2 — backtrack using the best projection heuristic

type: real, default: 107°

Absolute tolerance used to check if the current basic solution is integer
feasible. (Do not change this parameter without detailed understand-
ing its purpose.)

type: real, default: 1077

Relative tolerance used to check if the value of the objective function
is not better than in the best known integer feasible solution. (Do not
change this parameter without detailed understanding its purpose.)
type: int, default: 1

If this flag is set, the routine lpx_write_mps writes several comment
cards, which contains some information about the problem. Otherwise
the routine writes no comment cards. This flag also affects the routine
lpx_write_bas.

type: int, default: 2

This parameter tells the routine lpx_write_mps how to output the
objective function row:

0 — never output objective function row

1 — always output objective function row

2 — output objective function row if the problem has no free rows
type: int, default: 0

If this flag is set, the routine 1px_write_mps uses the original symbolic
names of rows and columns. Otherwise the routine generates plain
names using ordinal numbers of rows and columns. This flag also
affects the routines 1px_read_bas and lpx_write_bas.

type: int, default: 1

If this flag is set, the routine lpx_write_mps uses all data fields. Oth-
erwise the routine keeps fields 5 and 6 empty.

type: int, default: 0

If this flag is set, the routine 1px_write_mps omits column and vector
names every time when possible (free style). Otherwise the routine
never omits these names (pedantic style).

type: int, default: 0

If this flag is set, the routine 1px_write_mps skips empty columns (i.e.
which has no constraint coefficients). Otherwise the routine outputs
all columns.

type: int, default: 0

If this flag is set, the routine 1px_simplex solves the problem using
the built-in LP presolver. Otherwise the LP presolver is not used.
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2.12 Utility routines

2.12.1 1lpx read mps — read problem data in fixed MPS format
Synopsis

#include "glpk.h"
LPX *1px_read_mps(char *fname);

Description The routine 1lpx_read_mps reads LP/MIP problem data in fixed MPS
format from an input text file whose name is the character string fname. (The MPS
format is described in Appendix B, page 66.)

Behavior of the routine 1px_read_mps depends on some control parameters (see Sub-
section 2.11.6, page 54.)

Returns If no error occurred, the routine returns a pointer to the created problem
object. Otherwise the routine returns NULL.

2.12.2 1lpx write mps — write problem data in fixed MPS format
Synopsis

#include "glpk.h"
int lpx_write_mps(LPX *1p, char *fname);

Description The routine lpx_write_mps writes problem data in fixed MPS format
to an output text file whose name is the character string fname. (The MPS format is
described in Appendix B, page 66.)

Behavior of the routine 1px_write_mps depends on some control parameters (see Sub-
section 2.11.6, page 54.)

Returns If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.

2.12.3 1lpx.read bas — read LP basis in fixed MPS format
Synopsis

#include "glpk.h"
int 1lpx_read_bas(LPX *1lp, char *fname);

Description The routine 1px_read_bas reads LP basis in fixed MPS format from an
input text file whose name is the character string fname. (About this feature of the MPS
format see Section B.13, page 75.)

Behavior of the routine 1px_read_bas depends on some control parameters (see Sub-
section 2.11.6, page 54.)
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Returns If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.

2.12.4 1lpx write bas — write LP basis in fixed MPS format
Synopsis

#include "glpk.h"
int lpx_write_bas(LPX *1lp, char *fname);

Description The routine 1px_write_bas writes current LP basis in fixed MPS format
to an output text file whose name is the character string fname. (About this feature of
the MPS format see Section B.13, page 75.)

Behavior of the routine 1px_write_bas depends on some control parameters (see Sub-
section 2.11.6, page 54.)

Returns If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.

2.12.5 1lpx.read freemps — read problem data in free MPS format
Synopsis

#include "glpk.h"
LPX *1px_read_freemps(char *fname);

Description The routine 1px_read_freemps reads LP/MIP problem data in free MPS
format from an input text file whose name is the character string fname. (The MPS format
is described in Appendix B, page 66.)

Behavior of the routine 1px_read_freemps depends on some control parameters (see
Subsection 2.11.6, page 54.)

Returns If no error occurred, the routine returns a pointer to the created problem
object. Otherwise the routine returns NULL.

2.12.6 1lpx write freemps — write problem data in free MPS format
Synopsis

#include "glpk.h"
int lpx_write_freemps(LPX *1lp, char *fname);

Description The routine 1px_write_freemps writes problem data in fixed MPS format
to an output text file whose name is the character string fname. (The MPS format is
described in Appendix B, page 66.)

Behavior of the routine 1px_write_freemps depends on some control parameters (see
Subsection 2.11.6, page 54.)
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Returns If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.

2.12.7 1lpx.read cpxlp — read problem data in CPLEX LP format

Synopsis

#include "glpk.h"
LPX #*1lpx_read_cpxlp(char *fname);

Description The routine 1px_read_cpxlp reads LP/MIP problem data in CPLEX LP
format from an input text file whose name is the character string fname. (The CPLEX
LP format is described in Appendix C, page 77.)

Returns Behavior of the routine 1px_read_cpxlp depends on some control parameters
(see Subsection 2.11.6, page 54.)

Returns If no error occurred, the routine returns a pointer to the created problem
object. Otherwise the routine returns NULL.

2.12.8 1lpx write cpxlp — write problem data in CPLEX LP format

Synopsis

#include "glpk.h"
int lpx_write_cpxlp(LPX *1lp, char *fname);

Description The routine lpx_write_cpxlp writes problem data in CPLEX LP format
to an output text file whose name is the character string fname. (The CPLEX LP format
is described in Appendix C, page 77.)

Behavior of the routine 1px_write_cpxlp depends on some control parameters (see
Subsection 2.11.6, page 54.)

Returns If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.

2.12.9 1lpx read model — read model written in GNU MathProg model-
ing language

Synopsis

#include "glpk.h"
LPX *1px_read_model(char *model, char *data, char *output);
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Description The routine 1px_read_model reads and translates LP/MIP model (prob-
lem) written in the GNU MathProg modeling language.?

The character string model specifies name of input text file, which contains model
section and, optionally, data section. This parameter cannot be NULL.

The character string data specifies name of input text file, which contains data section.
This parameter can be NULL. (If the data file is specified and the model file also contains
data section, that section is ignored and data section from the data file is used.)

The character string output specifies name of output text file, to which the output
produced by display statements is written. If the parameter output is NULL, the display
output is sent to stdout via the routine print.

The routine 1px_read_model is an interface to the model translator, which is a pro-
gram that parses model description and translates it to some internal data structures.

For detailed description of the modeling language see the document “GLPK: Modeling
Language GNU MathProg” included in the GLPK distribution.

Returns If no errors occurred, the routine returns a pointer to the created problem
object. Otherwise the routine sends diagnostics to the standard output and returns NULL.

2.12.10 1lpx_print_prob — write problem data in plain text format
Synopsis

#include "glpk.h"
int lpx_print_prob(LPX *1lp, char *fname);

Description The routine lpx_print_prob writes data from a problem object, which
the parameter 1p points to, to an output text file, whose name is the character string
fname, in plain text format.

Information reported by the routine lpx_print_prob is intended mainly for visual
analysis.

Returns If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.

2.12.11 1px print_sol — write basic solution in printable format
Synopsis

#include "glpk.h"
int lpx_print_sol(LPX *1lp, char *fname);

Description The routine 1px_print_sol writes the current basic solution of an LP
problem, which is specified by the pointer 1p, to a text file, whose name is the character
string fname, in printable format.

Information reported by the routine lpx_print_sol is intended mainly for visual
analysis.

2The GNU MathProg modeling language is a subset of the AMPL language.
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Returns If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.

2.12.12 1lpx_ print_sens_bnds — write bounds sensitivity information

Synopsis

#include "glpk.h"
int lpx_print_sens_bnds(LPX *1lp, char *fname);

Description The routine 1px_print_sens_bnds writes the bounds for objective coeffi-
cients, right-hand-sides of constraints, and variable bounds for which the current optimal
basic solution remains optimal (for LP only).

The LP is given by the pointer 1p, and the output is written to the file specified by
fname. The current contents of the file will be overwritten.

Information reported by the routine lpx_print_sens_bnds is intended mainly for
visual analysis.

Returns If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.

2.12.13 1lpx_print_ips — write interior point solution in printable format

Synopsis

#include "glpk.h"
int lpx_print_ips(LPX *1p, char *fname);

Description The routine 1px_print_ips writes the current interior point solution of an
LP problem, which the parameter 1p points to, to a text file, whose name is the character
string fname, in printable format.

Information reported by the routine lpx_print_ips is intended mainly for visual
analysis.

Returns If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.

2.12.14 lpx print mip — write MIP solution in printable format

Synopsis

#include "glpk.h"
int lpx_print_mip(LPX *1lp, char *fname);
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Description The routine 1px_print_mip writes a best known integer solution of a MIP
problem, which is specified by the pointer 1p, to a text file, whose name is the character
string fname, in printable format.

Information reported by the routine lpx_print_mip is intended mainly for visual
analysis.

Returns If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.




Appendix A

Installing GLPK on Your
Computer

A.1 Obtaining GLPK distribution file

The distrubution file for the most recent version of the GLPK package can be downloaded
from <ftp://ftp.gnu.org/gnu/glpk/> or from some mirror GNU ftp sites; for details
see <http://www.gnu.org/order/ftp.html>.

A.2 Unpacking the distribution file

The GLPK package (like all other GNU software) is distributed in the form of packed
archive. This is one file named glpk-x.y.tar.gz, where z is the major version number
and y is the minor version number.

In order to prepare the distribution for installation you should:

1. Copy the GLPK distribution file to some subdirectory.

2. Enter the command gzip -d glpk-x.y.tar.gz in order to unpack the distribution
file. After unpacking the name of the distribution file will be automatically changed to
glpk-x.y.tar.

3. Enter the command tar -x < glpk-x.y.tar in order to unarchive the distribution.
After this operation the subdirectory glpk-x.y, which is the GLPK distribution, will be
automatically created.

A.3 Configuring the package

After you have unpacked and unarchived GLPK distribution you should configure the
package, i.e. automatically tune it for your computer (platform).

Normally, you should just cd to the subdirectory glpk-x.y and enter the command
./configure. If you are using csh on an old version of System V, you might need to type
sh configure instead to prevent csh from trying execute configure itself.

The configure shell script attempts to guess correct values for various system-
dependent variables used during compilation, and creates Makefile. It also creates a
file config.status that you can run in the future to recreate the current configuration.

Running configure takes about a few minutes. While it is running, it displays some
informational messages that tell you what it is doing. If you don’t want to see these
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messages, run configure with its standard output redirected to dev/null; for example,
./configure >/dev/null.

A.4 Compiling and checking the package

Normally, in order to compile the package you should just enter the command make.
This command reads Makefile generated by configure and automatically performs all
necessary job.

The result of compilation is:

e the file 1ibglpk.a, which is a library archive that contains object code for all GLPK
routines; and

e the program glpsol, which is a stand-alone LP/MIP solver.

If you want, you can override the make variables CFLAGS and LDFLAGS like this:

make CFLAGS=-02 LDFLAGS=-s

To compile the package in a different directory from the one containing the source
code, you must use a version of make that supports VPATH variable, such as GNU make.
cd to the directory where you want the object files and executables to go and run the
configure script. configure automatically checks for the source code in the directory
that configure is in and in ‘.. . If for some reason configure is not in the source code
directory that you are configuring, then it will report that it can’t find the source code.
In that case, run configure with the option --srcdir=DIR, where DIR is the directory
that contains the source code.

On systems that require unusual options for compilation or linking the package’s
configure script does not know about, you can give configure initial values for vari-
ables by setting them in the environment. In Bourne-compatible shells you can do that
on the command line like this:

CC=’gcc -traditional’ LIBS=-lposix ./configure

Here are the make variables that you might want to override with environment variables
when running configure.

For these variables, any value given in the environment overrides the value that
configure would choose:

e variable CC: C compiler program. The default is cc.

e variable INSTALL: program to use to install files. The default value is install if you
have it, otherwise cp.

For these variables, any value given in the environment is added to the value that
configure chooses:

e variable DEFS: configuration options, in the form ‘~-Dfoo -Dbar ...’.

e variable LIBS: libraries to link with, in the form ‘-1foo -lbar ...’.

In order to check the package (running some tests included in the distribution) you
can just enter the command make check.

A.5 Installing the package

Normally, in order to install the GLPK package (i.e. copy GLPK library, header files, and
the solver to the system places) you should just enter the command make install (note
that you should be the root user or a superuser).
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By default, make install will install the package’s files in the subdirectories
usr/local/bin, usr/local/lib, etc. You can specify an installation prefix other than
/usr/local by giving configure the option —-prefix=PATH. Alternately, you can do so
by consistently giving a value for the prefix variable when you run make, e.g.

make prefix=/usr/gnu

make prefix=/usr/gnu install

After installing you can remove the program binaries and object files from the source
directory by typing make clean. To remove all files that configure created (Makefile,
config.status, etc.), just type make distclean.

The file configure.in is used to create configure by a program called autoconf.
You only need it if you want to remake configure using a newer version of autoconf.

A.6 Uninstalling the package

In order to uninstall the GLPK package (i.e. delete all GLPK files from the system places)
you can enter the command make uninstall.



Appendix B

MPS Format

B.1 Fixed MPS Format

The MPS format! is intended for coding LP/MIP problem data. This format assumes the
formulation of LP/MIP problem (1.1)—(1.3) (see Section 1.1, page 7).

MPS file is a text file, which contains two types of cards?: indicator cards and data
cards.

Indicator cards determine a kind of succeeding data. Each indicator card has one word
in uppercase letters beginning in column 1.

Data cards contain problem data. Each data card is divided into six fixed fields:

Field 1 Field 2 Field 3 Field4 Field5 Feld 6
Columns 2—3 5—12 15—22 25—36 40—47 50—61
Contents  Code Name Name Number Name Number

On a particular data card some fields may be optional.

Names are used to identify rows, columns, and some vectors (see below).

Aligning the indicator code in the field 1 to the left margin is optional.

All names specified in the fields 2, 3, and 5 should contain from 1 up to 8 arbitrary
characters (except control characters). If a name is placed in the field 3 or 5, its first
character should not be the dollar sign ‘$¢’. If a name contains spaces, the spaces are
ignored.

All numerical values in the fields 4 and 6 should be coded in the form sxxEsyy, where
s is the plus ‘+’ or the minus ‘-’ sign, zx is a real number with optional decimal point, yy
is an integer decimal exponent. Any number should contain up to 12 characters. If the
sign s is omitted, the plus sign is assumed. The exponent part is optional. If a number
contains spaces, the spaces are ignored.

If a card has the asterisk ‘*’ in the column 1, this card is considered as a comment and
ignored. Besides, if the first character in the field 3 or 5 is the dollar sign ‘$’, all characters
from the dollar sign to the end of card are considered as a comment and ignored.

'The MPS format was developed in 1960’s by IBM as input format for their mathematical programming
system MPS/360. Today the MPS format is a most widely used format understood by most mathemat-
ical programming packages. This appendix describes only the features of the MPS format, which are
implemented in the GLPK package.

2In 1960’s MPS file was a deck of 80-column punched cards, so the author decided to keep the word
“card”, which may be understood as “line of text file”.
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MPS file should contain cards in the following order:

e NAME indicator card;

e ROWS indicator card;

e data cards specifying rows (constraints);

e COLUMNS indicator card;

e data cards specifying columns (structural variables) and constraint coefficients;

e RHS indicator card;

e data cards specifying right-hand sides of constraints;

e RANGES indicator card;

e data cards specifying ranges for double-bounded constraints;

e BOUNDS indicator card;

e data cards specifying types and bounds of structural variables;

e ENDATA indicator card.

Section is a group of cards consisting of an indicator card and data cards succeeding
this indicator card. For example, the ROWS section consists of the ROWS indicator card
and data cards specifying rows.

The sections RHS, RANGES, and BOUNDS are optional and may be omitted.

B.2 Free MPS Format

Free MPS format is an improved version of the standard (fixed) MPS format described
above.?> Note that all changes in free MPS format concern only the coding of data while
the structure of data is the same for both fixed and free versions of the MPS format.

In free MPS format indicator and data records* may have arbitrary length not limited
to 80 characters. Fields of data records have no predefined positions, i.e. the fields may
begin in any position, except position 1, which must be blank, and must be separated from
each other by one or more blanks. However, the fields must appear in the same order as
in fixed MPS format.

Symbolic names in fields 2, 3, and 5 may be longer than 8 characters® and must not
contain embedded blanks.

Numeric values in fields 4 and 6 are limited to 12 characters and must not contain
embedded blanks.

Only six fields on each data record are used. Any other fields are ignored.

If the first character of any field (not necessarily fields 3 and 5) is the dollar sign ($),
all characters from the dollar sign to the end of record are considered as a comment and
ignored.

B.3 NAME indicator card

The NAME indicator card should be the first card in the MPS file (except optional com-
ment cards, which may precede the NAME card). This card should contain the word NAME
in the columns 1—4 and the problem name in the field 3. The problem name is optional
and may be omitted.

3This format was developed in the beginning of 1990’s by IBM as an alternative to the standard fixed
MPS format for Optimization Subroutine Library (OSL).

4Record in free MPS format has the same meaning as card in fixed MPS format.

SGLPK allows symbolic names having up to 255 characters.
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B.4 ROWS section

The ROWS section should start with the indicator card, which contains the word ROWS in
the columns 1—4.

Each data card in the ROWS section specifies one row (constraint) of the problem.
All these data cards have the following format.

‘N’ in the field 1 means that the row is free (unbounded):

—00 < Tj = @4i1Tm+1 + A2Tm+42 + .o + QGinTmin < +00;
‘L’ in the field 1 means that the row is of “less than or equal to” type:
—00 < Ty = i1 Tm41 + @2Tmy2 + -« . + CinTmin < bi;
‘G’ in the field 1 means that the row is of “greater than or equal to” type:
bi < x = anTm+1 + @2Tmi2 + - .- + QinTmin < +00;
‘E’ in the field 1 means that the row is of “equal to” type:
Ti = Qi1 Tm+1 + i2Tm42 + -« + QinZmtn < b,

where b; is a right-hand side. Note that each constraint has a corresponding implictly
defined auxiliary variable (z; above), whose value is a value of the corresponding linear
form, therefore row bounds can be considered as bounds of such auxiliary variable.

The filed 2 specifies a row name (which is considered as the name of the corresponding
auxiliary variable).

The fields 3, 4, 5, and 6 are not used and should be empty.

Numerical values of all non-zero right-hand sides b; should be specified in the RHS
section (see below). All double-bounded (ranged) constraints should be specified in the
RANGES section (see below).

B.5 COLUMNS section

The COLUMNS section should start with the indicator card, which contains the word
COLUMNS in the columns 1—7.

Each data card in the COLUMNS section specifies one or two constraint coefficients
a;; and also introduces names of columns, i.e. names of structural variables. All these
data cards have the following format.

The field 1 is not used and should be empty.

The field 2 specifies a column name. If this field is empty, the column name from the
immediately preceeding data card is assumed.

The field 3 specifies a row name defined in the ROWS section.

The field 4 specifies a numerical value of the constraint coefficient a;;, which is placed
in the corresponding row and column.

The fields 5 and 6 are optional. If they are used, they should contain a second pair
“row name—constraint coefficient” for the same column.

Elements of the constraint matrix (i.e. constraint coefficients) should be enumerated
in the column wise manner: all elements for the current column should be specified before
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elements for the next column. However, the order of rows in the COLUMNS section may
differ from the order of rows in the ROWS section.

Constraint coefficients not specified in the COLUMNS section are considered as zeros.
Therefore zero coefficients may be omitted, although it is allowed to explicitly specify
them.

B.6 RHS section

The RHS section should start with the indicator card, which contains the word RHS in the
columns 1—3.

Each data card in the RHS section specifies one or two right-hand sides b; (see Section
B.4, page 68). All these data cards have the following format.

The field 1 is not used and should be empty.

The field 2 specifies a name of the right-hand side (RHS) vector®. If this field is empty,
the RHS vector name from the immediately preceeding data card is assumed.

The field 3 specifies a row name defined in the ROWS section.

The field 4 specifies a right-hand side b; for the row, whose name is specified in the
field 3. Depending on the row type b; is a lower bound (for the row of G type), an upper
bound (for the row of L type), or a fixed value (for the row of E type).”

The fields 5 and 6 are optional. If they are used, they should contain a second pair
“row name—right-hand side” for the same RHS vector.

All right-hand sides for the current RHS vector should be specified before right-hand
sides for the next RHS vector. However, the order of rows in the RHS section may differ
from the order of rows in the ROWS section.

Right-hand sides not specified in the RHS section are considered as zeros. Therefore
zero right-hand sides may be omitted, although it is allowed to explicitly specify them.

B.7 RANGES section

The RANGES section should start with the indicator card, which contains the word
RANGES in the columns 1—6.

Each data card in the RANGES section specifies one or two ranges for double-side
constraints, i.e. for constraints that are of the types L and G at the same time:

li <X = a1 Tmy1 + @i2Tmi2 + - -+ QinTmin < Uj,

where [; is a lower bound, u; is an upper bound. All these data cards have the following
format.

The field 1 is not used and should be empty.

The field 2 specifies a name of the range vector®. If this field is empty, the range vector
name from the immediately preceeding data card is assumed.

The field 3 specifies a row name defined in the ROWS section.

5This feature allows the user to specify several RHS vectors in the same MPS file. However, before
solving the problem a particular RHS vector should be chosen.

If the row is of N type, b; is considered as a constant term of the corresponding linear form. Should
note, however, this convention is non-standard.

8This feature allows the user to specify several range vectors in the same MPS file. However, before
solving the problem a particular range vector should be chosen.
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The field 4 specifies a range value r; (see the table below) for the row, whose name is
specified in the field 3.

The fields 5 and 6 are optional. If they are used, they should contain a second pair
“row name—range value” for the same range vector.

All range values for the current range vector should be specified before range values
for the next range vector. However, the order of rows in the RANGES section may differ
from the order of rows in the ROWS section.

For each double-side constraint specified in the RANGES section its lower and upper
bounds are determined as follows:

Row type Sign of r; Lower bound Upper bound

G + or — b; b; + |’I“Z|
L + or — b; — |7“Z‘ b;
E + bi bi + |ri
E — b; — |TZ‘ b;

where b; is a right-hand side specified in the RHS section (if b; is not specified, it is
considered as zero), r; is a range value specified in the RANGES section.

B.8 BOUNDS section

The BOUNDS section should start with the indicator card, which contains the word
BOUNDS in the columns 1—6.

Each data card in the BOUNDS section specifies one (lower or upper) bound for one
structural variable (column). All these data cards have the following format.

The indicator in the field 1 specifies the bound type:

L0 lower bound;

UP upper bound;

FX fixed variable (lower and upper bounds are equal);

FR free variable (no bounds);

MI no lower bound (lower bound is “minus infinity”);

PL 1o upper bound (upper bound is “plus infinity”);

The field 2 specifies a name of the bound vector?. If this field is empty, the bound
vector name from the immediately preceeding data card is assumed.

The field 3 specifies a column name defined in the COLUMNS section.

The field 4 specifies a bound value. If the bound type in the field 1 differs from LO,
UP, and FX, the value in the field 4 is ignored and may be omitted.

The fields 5 and 6 are not used and should be empty.

All bound values for the current bound vector should be specified before bound values
for the next bound vector. However, the order of columns in the BOUNDS section may
differ from the order of columns in the COLUMNS section. Specification of a lower bound
should precede specification of an upper bound for the same column (if both the lower
and upper bounds are explicitly specified).

By default, all columns (structural variables) are non-negative, i.e. have zero lower
bound and no upper bound. Lower (I;) and upper (u;) bounds of some column (structural

9This feature allows the user to specify several bound vectors in the same MPS file. However, before
solving the problem a particular bound vector should be chosen.
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variable z;) are set in the following way, where s; is a corresponding bound value explicitly
specified in the BOUNDS section:

LO sets [ to s;;

UP  sets uj to s;;

FX sets both [; and u; to s;;

FR sets l; to —oo and u; to +oo;

MI sets [; to —oo;

PL  sets u; to +o0.

B.9 ENDATA indicator card

The ENDATA indicator card should be the last card of MPS file (except optional comment
cards, which may follow the ENDATA card). This card should contain the word ENDATA
in the columns 1—6.

B.10 Specifying objective function

It is impossible to explicitly specify the objective function and optimization direction in
the MPS file. However, the following implicit rule is used by default: the first row of N
type is considered as a row of the objective function (i.e. the objective function is the
corresponding auxiliary variable), which should be minimized.

GLPK also allows specifying a constant term of the objective function as a right-hand
side of the corresponding row in the RHS section.

B.11 Example of MPS file

In order to illustrate what the MPS format is, consider the following example of LP
problem:

minimize
value = .03 bing + .08 bing + .17 bing + .12 bing + .15 bins + .21 alum + .38 silicon

subject to linear constraints

yield = bing + bing + bing + bing + bins + alum + silicon
fe = .15 biny + .04 bing + .02 bing + .04 bing + .02 bins + .01 alum + .03 silicon
cu = .03 bing + .05 bing + .08 bing + .02 bing + .06 bins + .01 alum

mn = .02 biny + .04 biny + .01 bing + .02 bing + .02 bins

mg = .02 bing + .03 bing + .01 bins

al = .70 biny + .75 bing + .80 bing + .75 bing + .80 bins + .97 alum

st = .02 bing + .06 bing + .08 bing + .12 bing + .02 bins + .01 alum + .97 silicon
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and bounds of (auxiliary and structural) variables

yield = 2000 0<bing < 200
—o < fe < 60 0 <bing <2500
—o<cu < 100 400 < bing < 800
—oco<mn < 40 100 < bing < 700
—oco<mg < 30 0 < bins < 1500
1500 < al < 40 0 <alum < 40
250 < s3 < 300 0 < silicon < +oo

A complete MPS file which specifies data for this example is shown below (the first
two comment lines show card positions).

*000000001111111111222222222233333333334444444444555555555566
*234567890123456789012345678901234567890123456789012345678901
NAME PLAN

ROWS
N VALUE
E YIELD
L FE
L CU
L MN
L MG
G AL
L 8SI
COLUMNS
BIN1 VALUE .03000  YIELD 1.00000
FE .15000 CU .03000
MN .02000 MG .02000
AL .70000 SI .02000
BIN2 VALUE .08000  YIELD 1.00000
FE .04000 CU .05000
MN .04000 MG .03000
AL .75000 SI .06000
BIN3 VALUE .17000  YIELD 1.00000
FE .02000 CU .08000
MN .01000 AL .80000
SI .08000
BIN4 VALUE .12000  YIELD 1.00000
FE .04000 CU .02000
MN .02000 AL .75000
SI .12000
BINS VALUE .15000  YIELD 1.00000
FE .02000 CU .06000
MN .02000 MG .01000
AL .80000 SI .02000
ALUM VALUE .21000  YIELD 1.00000
FE .01000 CU .01000

AL .97000 SI .01000
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SILICON  VALUE .38000  YIELD 1.00000
FE .03000 SI .97000
RHS
RHS1 YIELD 2000.00000 FE 60.00000
CU 100.00000  MN 40.00000
SI 300.00000
MG 30.00000 AL 1500.00000
RANGES
RNG1 SI 50.00000
BOUNDS
UP BND1 BIN1 200.00000
UP BIN2 2500.00000
LO BIN3 400.00000
UP BIN3 800.00000
LO BIN4 100.00000
UP BIN4 700.00000
UP BINS 1500.00000
ENDATA

B.12 MIP features

The MPS format provides two ways for introducing integer variables into the problem.

The first way is most general and based on using special marker cards INTORG and
INTEND. These marker cards are placed in the COLUMNS section. The INTORG card
indicates the start of a group of integer variables (columns), and the card INTEND indi-
cates the end of the group. The MPS file may contain arbitrary number of the marker
cards.

The marker cards have the same format as the data cards (see Section B.1, page 66).

The fields 1, 2, and 6 are not used and should be empty.

The field 2 should contain a marker name. This name may be arbitrary.

The field 3 should contain the word MARKER’ (including apostrophes).

The field 5 should contain either the word >INTORG’ (including apostrophes) for the
marker card, which begins a group of integer columns, or the word ’>INTEND’ (including
apostrophes) for the marker card, which ends the group.

The second way is less general but more convenient in some cases. It allows the user
to declare integer columns using two additional types of bounds, which are specified in
the field 1 of data cards in the BOUNDS section (see Section B.8, page 70):

UI upper integer. This bound type specifies that the corresponding column (struc-
tural variable), whose name is specified in the field 3, is of integer kind. In this
case an upper bound of the column should be specified in the field 4 (like in the
case of UP bound type).

BV binary variable. This bound type specifies that the corresponding column (struc-
tural variable), whose name is specified in the field 3, is of integer kind, its lower
bound is zero, and its upper bound is one (thus, such variable being of integer
kind can have only two values zero and one). In this case a numeric value specified
in the field 4 is ignored and may be omitted.

Consider the following example of MIP problem:
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minimize
Z =3x1+ Txg —x3+ 24

subject to linear constraints

T =2r1— T2+ T3— T4
r9o = IT1 — $2—6$3+4:134
r3 = 511 + 322 + x4

and bound of variables

1<rm <400 0<z; <4 (continuous)
8 <19 < 400 2 <x9 <5 (integer)
5<r3 < 400 0<z3<1 (integer)

3 <z4 <8 (continuous)

The corresponding MPS file may look like the following:

NAME SAMP1

ROWS

N Z

G R1

G R2

G R3

COLUMNS
X1 R1 2.0 R2 1.0
X1 R3 5.0 Z 3.0
MARKOOO1 ’MARKER’ > INTORG’
X2 R1 -1.0 R2 -1.0
X2 R3 .0 Z 7.0
X3 R1 1.0 R2 -6.0
X3 Z -1.0
MARKO002 ’MARKER’ >INTEND’
X4 R1 -1.0 R2 4.0
X4 R3 1.0 Z 1.0

RHS
RHS1 R1 1.0
RHS1 R2 8.0
RHS1 R3 5.0

BOUNDS

UP BND1 X1 4.0

LO BND1 X2 2.0

UP BND1 X2 5.0

UP BND1 X3 1.0

LO BND1 X4 3.0

UP BND1 X4 8.0

ENDATA

The same example may be coded without INTORG/INTEND markers using the bound
type UI for the variable xo and the bound type BV for the variable x3:
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NAME SAMP2
ROWS
N Z
G R1
G R2
G R3
COLUMNS
X1 R1 2.0 R2 1.0
X1 R3 5.0 Z 3.0
X2 R1 -1.0 R2 -1.0
X2 R3 .0 Z 7.0
X3 R1 1.0 R2 -6.0
X3 Z -1.0
X4 R1 -1.0 R2 4.0
X4 R3 1.0 Z 1.0
RHS
RHS1 R1 1.0
RHS1 R2 .0
RHS1 R3 5.0
BOUNDS
UP BND1 X1 4.0
LO BND1 X2 2.0
UI BND1 X2 5.0
BV BND1 X3
LO BND1 X4 3.0
UP BND1 X4 8.0
ENDATA

B.13 Specifying predefined basis

The MPS format can also be used to specify some predefined basis for an LP problem, i.e.
to specify which rows and columns are basic and which are non-basic.

The order of a basis file in the MPS format is:

e NAME indicator card;

e data cards (can appear in arbitrary order);

e ENDATA indicator card.

Each data card specifies either a pair ”basic column—non-basic row’
column. All the data cards have the following format.

> or a non-basic

‘XL’ in the field 1 means that a column, whose name is given in the field 2, is basic,
and a row, whose name is given in the field 3, is non-basic and placed on its lower bound.

‘XU’ in the field 1 means that a column, whose name is given in the field 2, is basic,
and a row, whose name is given in the field 3, is non-basic and placed on its upper bound.

‘LL’ in the field 1 means that a column, whose name is given in the field 3, is non-basic
and placed on its lower bound.

‘UL’ in the field 1 means that a column, whose name is given in the field 3, is non-basic
and placed on its upper bound.

The field 2 contains a column name.
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If the indicator given in the field 1 is ‘XL’ or ‘XU’, the field 3 contains a row name.
Otherwise, if the indicator is ‘LL’ or ‘UL’, the field 3 is not used and should be empty.

The field 4, 5, and 6 are not used and should be empty.

A basis file in the MPS format acts like a patch: it doesn’t specify a basis completely,
instead that it is just shows in what a given basis differs from the ”standard” basis, where
all rows (auxiliary variables) are assumed to be basic and all columns (structural variables)
are assumed to be non-basic.

As an example here is a basis file that specifies an optimal basis for the example LP
problem given in Section B.11, Page 71:

*000000001111111111222222222233333333334444444444555555555566
*234567890123456789012345678901234567890123456789012345678901

NAME
XL
XL
XL
XL
XL
LL
LL

ENDA

BIN2
BIN3
BIN4
ALUM
SILICON
BIN1
BINS

TA

PLAN
YIELD
FE

MN

AL

SI



Appendix C

CPLEX LP Format

C.1 Prelude

The CPLEX LP format! is intended for coding LP/MIP problem data. It is a row-oriented
format that assumes the formulation of LP/MIP problem (1.1)—(1.3) (see Section 1.1,
page 7).

CPLEX LP file is a plain text file written in CPLEX LP format. Each text line of
this file may contain up to 255 characters®. Blank lines are ignored. If a line contains the
backslash character (\), this character and everything that follows it until the end of line
are considered as a comment and also ignored.

An LP file is coded by the user using the following elements:

e keywords;

e symbolic names;

e numeric constants;

e delimiters;

e blanks.

Keywords that may be used in the LP file are the following:

minimize minimum min

maximize maximum max

subject to such that s.t. st. st
bounds bound

general generals gen

integer integers int

binary binaries bin

infinity inf

free

end

All the keywords are case insensitive. Keywords given above on the same line are equiva-
lent. Any keyword (except infinity, inf, and free) being used in the LP file must start

The CPLEX LP format was developed in the end of 1980’s by CPLEX Optimization, Inc. as an input
format for the CPLEX linear programming system. Although the CPLEX LP format is not as widely used
as the MPS format, being row-oriented it is more convenient for coding mathematical programming models
by human. This appendix describes only the features of the CPLEX LP format which are implemented in
the GLPK package.

2GLPK allows text lines of arbitrary length.

77



78

at the beginning of a text line.

Symbolic names are used to identify the objective function, constraints (rows), and
variables (columns). All symbolic names are case sensitive and may contain up to 16
alphanumeric characters® (a, ..., z, A, ..., Z, 0, ..., 9) as well as the following characters:

e # 8 v ¢y /o, oo e 0 {0 T

with exception that no symbolic name can begin with a digit or a period.

Numeric constants are used to denote constraint and objective coefficients, right-hand
sides of constraints, and bounds of variables. They are coded in the standard form zxEsyy,
where zz is a real number with optional decimal point, s is a sign (+ or -), yy is an integer
decimal exponent. Numeric constants may contain arbitrary number of characters. The
exponent part is optional. The letter ‘E’ can be coded as ‘e’. If the sign s is omitted, plus
is assumed.

Delimiters that may be used in the LP file are the following;:

vV A
\4
1
I
\4

Delimiters given above on the same line are equivalent. The meaning of the delimiters will
be explained below.

Blanks are non-significant characters. They may be used freely to improve readability
of the LP file. Besides, blanks should be used to separate elements from each other if there
is no other way to do that (for example, to separate a keyword from a following symbolic
name).

The order of an LP file is:

e objective function definition;

e constraints section;

e bounds section;

e general, integer, and binary sections (can appear in arbitrary order);

e end keyword.

These components are discussed in following sections.

C.2 Objective function definition

The objective function definition must appear first in the LP file. It defines the objective
function and specifies the optimization direction.
The objective function definition has the following form:

{minimize

. fiscxscx ... scx
maximize

where f is a symbolic name of the objective function, s is a sign + or -, ¢ is a numeric
constant that denotes an objective coefficient, = is a symbolic name of a variable.

3GLPK allows symbolic names having up to 255 characters.
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If necessary, the objective function definition can be continued on as many text lines
as desired.

The name of the objective function is optional and may be omitted (together with the
semicolon that follows it). In this case the default name ‘obj’ is assigned to the objective
function.

If the very first sign s is omitted, the sign plus is assumed. Other signs cannot be
omitted.

If some objective coefficient ¢ is omitted, 1 is assumed.

Symbolic names = used to denote variables are recognized by context and therefore
needn’t to be declared somewhere else.

Here is an example of the objective function definition:

Minimize Z : - x1 + 2 x2 - 3.5 x3 + 4.997e3x(4) + x5 + x6 +
X7 - .01x8

C.3 Constraints section

The constraints section must follow the objective function definition. It defines a system
of equality and/or inequality constraints.
The constraint section has the following form:

subject to
constraint;
constrainty

constraint,,

where constraint;, i = 1,...,m, is a particular constraint definition.

Each constraint definition can be continued on as many text lines as desired. How-
ever, each constraint definition must begin on a new line except the very first constraint
definition which can begin on the same line as the keyword ‘subject to’.

Constraint definitions have the following form:

T:SCTSCT ... SCT {>=, b

where r is a symbolic name of a constraint, s is a sign + or -, ¢ is a numeric constant that
denotes a constraint coefficient, x is a symbolic name of a variable, b is a right-hand side.

The name r of a constraint (which is the name of the corresponding auxiliary variable)
is optional and may be omitted (together with the semicolon that follows it). In this case
the default names like ‘r.nnn’ are assigned to unnamed constraints.

The linear form s cx s cx ... s c x in the left-hand side of a constraint definition has
exactly the same meaning as in the case of the objective function definition (see above).

After the linear form one of the following delimiters that indicate the constraint sense
must be specified:

<= means ‘less than or equal to’

>= means ‘greater than or equal to’

= means ‘equal to’
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The right hand side b is a numeric constant with an optional sign.
Here is an example of the constraints section:

Subject To
one: yl + 3 al - a2 - b >= 1.5
y2 + 2 a3 + 2
a4 - b >= -1.5
two : y4 + 3 al + 4 ab - b <= +1
.20yb + 5 a2 -b =0
1.7 y6 - a6 + 5 a777 - b >= 1

(Should note that it is impossible to express ranged constraints in the CPLEX LP
format. Each a ranged constraint can be coded as two constraints with identical linear
forms in the left-hand side, one of which specifies a lower bound and other does an upper
one of the original ranged constraint.)

C.4 Bounds section

The bounds section is intended to define bounds of variables. This section is optional; if
it is specified, it must follow the constraints section. If the bound section is omitted, all
variables are assumed to be non-negative (i.e. that they have zero lower bound and no
upper bound).

The bounds section has the following form:

bounds
definitiony
definitiong

definition,,

where definitioni, k = 1,...,p, is a particular bound definition.

Each bound definition must begin on a new line* except the very first bound definition
which can begin on the same line as the keyword ‘bounds’.

Syntactically constraint definitions can have one of the following six forms:

x >=1 specifies a lower bound

l<=2x specifies a lower bound

T <=u specifies an upper bound

[ <= x <= u specifies both lower and upper bounds
=t specifies a fixed value

x free specifies free variable

where x is a symbolic name of a variable, [ is a numeric constant with an optional sign
that defines a lower bound of the variable or —inf that means that the variable has no
lower bound, u is a numeric constant with an optional sign that defines an upper bound
of the variable or +inf that means that the variable has no upper bound, ¢ is a numeric
constant with an optional sign that defines a fixed value of the variable.

“The GLPK implementation allows several bound definitions to be placed on the same line.
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By default all variables are non-negative, i.e. have zero lower bound and no upper
bound. Therefore definitions of these default bounds can be omitted in the bounds section.
Here is an example of the bounds section:

Bounds
-inf <= al <= 100
-100 <= a2
b <= 100
x2 +123.456
x3 free

C.5 General, integer, and binary sections

The general, integer, and binary sections are intended to define some variables as integer
or binary. All these sections are optional and needed only in case of MIP problems. If
they are specified, they must follow the bounds section or, if the latter is omitted, the
constraints section.

All the general, integer, and binary sections have the same form as follows:

general
integer
binary
I
2
Lq

where xj, is a symbolic name of variable, k =1,...,q.

Each symbolic name must begin on a new line® except the very first symbolic name
which can begin on the same line as the keyword ‘general’; ‘integer’, or ‘binary’.

If a variable appears in the general or the integer section, it is assumed to be general
integer variable. If a variable appears in the binary section, it is assumed to be binary
variable, i.e. an integer variable whose lower bound is zero and upper bound is one. (Note
that if bounds of a variable are specified in the bounds section and then the variable
appears in the binary section, its previously specified bounds are ignored.)

Here is an example of the integer section:

Integer
z12
z22
z35

C.6 End keyword

The keyword ‘end’ is intended to end the LP file. It must begin on a separate line and no
other elements (except comments and blank lines) must follow it. Although this keyword
is optional, it is strongly recommended to include it in the LP file.

5The GLPK implementation allows several symbolic names to be placed on the same line.
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C.7 Example of CPLEX LP file

Here is a complete example of CPLEX LP file that corresponds to the example given in
Section B.11, page 71.

\* plan.lp *\
Minimize

value: .03 binl + .08 bin2 + .17 bin3 + .12 bin4 + .15 binb +
.21 alum + .38 silicon

Subject To
yield: binl + bin2 + bin3 + bind + binb +
alum + silicon = 2000
fe: .15 binl + .04 bin2 + .02 bin3 + .04 bind + .02 binb +
.01 alum + .03 silicon <= 60
cu: .03 binl + .05 bin2 + .08 bin3 + .02 bind + .06 binb +
.01 alum <= 100
mn: .02 binl + .04 bin2 + .01 bin3 + .02 bin4 + .02 binb <= 40
mg: .02 binl + .03 bin2 + .01 binb <= 30
al: .70 binl + .75 bin2 + .80 bin3 + .75 bind + .80 binb +
.97 alum >= 1500
sil: .02 binl + .06 bin2 + .08 bin3 + .12 bind + .02 binb +
.01 alum + .97 silicon >= 250
si2: .02 binl + .06 bin2 + .08 bin3 + .12 bind + .02 binb +
.01 alum + .97 silicon <= 300
Bounds
binl <= 200
bin2 <= 2500

400 <= bin3 <= 800
100 <= bind <= 700
binb <= 1500

End

\* eof *\



Appendix D

Stand-alone LP/MIP Solver

The GLPK package includes the program glpsol which is a stand-alone LP/MIP solver.
This program can be invoked from the command line of from the shell to read LP/MIP
problem data in any format supported by GLPK, solve the problem, and write the obtained
problem solution to a text file in plain format.

Usage

glpsol [options...] [filename]

General options

--glp read LP/MIP model in GNU LP format

--mps read LP/MIP problem in fixed MPS format (default)

--freemps read LP/MIP problem in free MPS format

--cpxlp read LP/MIP problem in CPLEX LP format

--math read LP/MIP model written in GNU MathProg modeling language

-m filename, —-model filename
read model section and optional data section from filename (the same
as —-math)

-d filename, --data filename
read data section from filename (for --math only); if model file also
has data section, that section is ignored

-y filename, --display filename
send display output to filename (for --math only); by default the
output is sent to stdout

--min minimization

--max maximization

--scale scale problem (default)

--noscale do not scale problem

--simplex use simplex method (default)

--interior use interior point method (for pure LP only)

-o filename, ——output filename
write solution to filename in plain text format
--bounds filename
write sensitivity bounds to filename in plain text format (LP only)
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-—tmlim nnn limit solution time to nnn seconds (--tmlim O allows obtaining solu-
tion at initial point)

--check do not solve problem, check input data only

--name probname change problem name to probname

--plain use plain names of rows and columns (default)

--orig try using original names of rows and columns (default for —-mps)

--wglp filename  write problem to filename in GNU LP format
—-—wmps filename  write problem to filename in fixed MPS format
--wfreemps filename

write problem to filename in free MPS format
--wecpxlp filename

write problem to filename in CPLEX LP format
--wtxt filename  write problem to filename in plain text format
-h, —-help display this help information and exit
-v, --version display program version and exit

Options specific to simplex method

--std use standard initial basis of all slacks

--adv use advanced initial basis (default)

—--bas filename read initial basis from filename in MPS format
--steep use steepest edge technique (default)

--nosteep use standard “textbook” pricing

--relax use Harris” two-pass ratio test (default)

--norelax use standard “textbook” ratio test

--presol use LP presolver (default; assumes --scale and --adv)
--nopresol do not use LP presolver

--wbas filename  write final basis to filename in MPS format

Options specific to MIP

—--nomip consider all integer variables as continuous (allows solving MIP as
pure LP)

--first branch on first integer variable

--last branch on last integer variable

--drtom branch using heuristic by Driebeck and Tomlin (default)

--mostf branch on most fractional varaible

--dfs backtrack using depth first search

--bfs backtrack using breadth first search

--bestp backtrack using the best projection heuristic (default)

--bestb backtrack using node with best local bound

For description of the MPS format see Appendix B, page 66.
For description of the CPLEX LP format see Appendix C, page 77.

For description of the modeling language see the document “GLPK: Modeling Language
GNU MathProg” included in the GLPK distribution.



