
GNU Linear Programming Kit

Reference Manual

Version 4.8

(Draft Edition, January 2005)

2

The GLPK package is part of the GNU Project released under the aegis of GNU.

Copyright c© 2000, 2001, 2002, 2003, 2004, 2005 Andrew Makhorin, Department for Ap-
plied Informatics, Moscow Aviation Institute, Moscow, Russia. All rights reserved.

Free Software Foundation, Inc., 59 Temple Place — Suite 330, Boston, MA 02111, USA.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another
language, under the above conditions for modified versions.

Contents

1 Introduction 7

1.1 LP Problem . 7

1.2 MIP Problem . 9

1.3 Brief Example . 9

2 API Routines 13

2.1 Problem object . 14

2.2 Problem creating and modifying routines 17

2.2.1 lpx create prob — create problem object 17

2.2.2 lpx set prob name — assign (change) problem name 17

2.2.3 lpx set obj name — assign (change) objective function name 17

2.2.4 lpx set obj dir — set (change) optimization direction flag 17

2.2.5 lpx add rows — add new rows to problem object 18

2.2.6 lpx add cols — add new columns to problem object 18

2.2.7 lpx set row name — assign (change) row name 18

2.2.8 lpx set col name — assign (change) column name 19

2.2.9 lpx set row bnds — set (change) row bounds 19

2.2.10 lpx set col bnds — set (change) column bounds 19

2.2.11 lpx set obj coef — set (change) objective coefficient or constant
term . 20

2.2.12 lpx set mat row — set (replace) row of the constraint matrix . . . 20

2.2.13 lpx set mat col — set (replace) column of the constraint matrix . 21

2.2.14 lpx load matrix — load (replace) the whole constraint matrix . . . 21

2.2.15 lpx del rows — delete rows from problem object 21

2.2.16 lpx del cols — delete columns from problem object 22

2.2.17 lpx delete prob — delete problem object 22

2.3 Problem retrieving routines . 23

2.3.1 lpx get prob name — retrieve problem name 23

2.3.2 lpx get obj name — retrieve objective function name 23

2.3.3 lpx get obj dir — retrieve optimization direction flag 23

2.3.4 lpx get num rows — retrieve number of rows 23

2.3.5 lpx get num cols — retrieve number of columns 24

2.3.6 lpx get row name — retrieve row name 24

2.3.7 lpx get col name — retrieve column name 24

2.3.8 lpx get row type — retrieve row type 24

2.3.9 lpx get row lb — retrieve row lower bound 25

2.3.10 lpx get row ub — retrieve row upper bound 25

3

4

2.3.11 lpx get col type — retrieve column type 25

2.3.12 lpx get col lb — retrieve column lower bound 25

2.3.13 lpx get col ub — retrieve column upper bound 26

2.3.14 lpx get obj coef — retrieve objective coefficient or constant term . 26

2.3.15 lpx get num nz — retrieve number of constraint coefficients 26

2.3.16 lpx get mat row — retrieve row of the constraint matrix 26
2.3.17 lpx get mat col — retrieve column of the constraint matrix 27

2.4 Problem scaling routines . 28

2.4.1 lpx scale prob — scale problem data 28

2.4.2 lpx unscale prob — unscale problem data 28

2.5 LP basis constructing routines . 29

2.5.1 lpx std basis — construct standard initial LP basis 29
2.5.2 lpx adv basis — construct advanced initial LP basis 29

2.5.3 lpx set row stat — set (change) row status 29

2.5.4 lpx set col stat — set (change) column status 30

2.6 Simplex method routine . 31

2.6.1 lpx simplex — solve LP problem using the simplex method 31

2.7 Basic solution retrieving routines . 33
2.7.1 lpx get status — retrieve generic status of basic solution 33

2.7.2 lpx get prim stat — retrieve primal status of basic solution 33

2.7.3 lpx get dual stat — retrieve dual status of basic solution 33

2.7.4 lpx get obj val — retrieve objective value 34

2.7.5 lpx get row stat — retrieve row status 34

2.7.6 lpx get row prim — retrieve row primal value 34
2.7.7 lpx get row dual — retrieve row dual value 34

2.7.8 lpx get col stat — retrieve column status 35

2.7.9 lpx get col prim — retrieve column primal value 35

2.7.10 lpx get col dual — retrieve column dual value 35

2.7.11 lpx get ray info — retrieve non-basic variable which causes un-
boundness . 35

2.7.12 lpx check kkt — check Karush-Kuhn-Tucker conditions 36

2.8 LP basis and simplex table routines . 40

2.8.1 lpx warm up — “warm up” LP basis 40

2.8.2 lpx eval tab row — compute row of the simplex table 40
2.8.3 lpx eval tab col — compute column of the simplex table 41

2.8.4 lpx transform row — transform explicitly specified row 41

2.8.5 lpx transform col — transform explicitly specified column 42

2.8.6 lpx prim ratio test — perform primal ratio test 43

2.8.7 lpx dual ratio test — perform dual ratio test 44
2.9 Interior-point method routines . 46

2.9.1 lpx interior — solve LP problem using the primal-dual interior-
point method . 46

2.9.2 lpx ipt status — retrieve status of interior-point solution 47
2.9.3 lpx ipt obj val — retrieve objective value 47

2.9.4 lpx ipt row prim — retrieve row primal value 47

2.9.5 lpx ipt row dual — retrieve row dual value 47

2.9.6 lpx ipt col prim — retrieve column primal value 48

2.9.7 lpx ipt col dual — retrieve column dual value 48

5

2.10 MIP routines . 49

2.10.1 lpx set class — set (change) problem class 49

2.10.2 lpx get class — retrieve problem class 49

2.10.3 lpx set col kind — set (change) column kind 49

2.10.4 lpx get col kind — retrieve column kind 49

2.10.5 lpx get num int — retrieve number of integer columns 50

2.10.6 lpx get num bin — retrieve number of binary columns 50

2.10.7 lpx integer — solve MIP problem using the branch-and-bound
method . 50

2.10.8 lpx mip status — retrieve status of MIP solution 51

2.10.9 lpx mip obj val — retrieve objective value 52

2.10.10lpx mip row val — retrieve row value 52

2.10.11lpx mip col val — retrieve column value 52

2.11 Control parameters and statistics routines 53

2.11.1 lpx reset parms — reset control parameters to default values . . . 53

2.11.2 lpx set int parm — set (change) integer control parameter 53

2.11.3 lpx get int parm — query integer control parameter 53

2.11.4 lpx set real parm — set (change) real control parameter 53

2.11.5 lpx get real parm — query real control parameter 54

2.11.6 Parameter list . 54

2.12 Utility routines . 57

2.12.1 lpx read mps — read problem data in fixed MPS format 57

2.12.2 lpx write mps — write problem data in fixed MPS format 57

2.12.3 lpx read bas — read LP basis in fixed MPS format 57

2.12.4 lpx write bas — write LP basis in fixed MPS format 58

2.12.5 lpx read freemps — read problem data in free MPS format 58

2.12.6 lpx write freemps — write problem data in free MPS format . . . 58

2.12.7 lpx read cpxlp — read problem data in CPLEX LP format 59

2.12.8 lpx write cpxlp — write problem data in CPLEX LP format . . . 59

2.12.9 lpx read model — read model written in GNU MathProg modeling
language . 59

2.12.10lpx print prob — write problem data in plain text format 60

2.12.11lpx print sol — write basic solution in printable format 60

2.12.12lpx print sens bnds — write bounds sensitivity information 61

2.12.13lpx print ips — write interior point solution in printable format . 61

2.12.14lpx print mip — write MIP solution in printable format 61

A Installing GLPK on Your Computer 63

A.1 Obtaining GLPK distribution file . 63

A.2 Unpacking the distribution file . 63

A.3 Configuring the package . 63

A.4 Compiling and checking the package . 64

A.5 Installing the package . 64

A.6 Uninstalling the package . 65

6

B MPS Format 66
B.1 Fixed MPS Format . 66
B.2 Free MPS Format . 67
B.3 NAME indicator card . 67
B.4 ROWS section . 68
B.5 COLUMNS section . 68
B.6 RHS section . 69
B.7 RANGES section . 69
B.8 BOUNDS section . 70
B.9 ENDATA indicator card . 71
B.10 Specifying objective function . 71
B.11 Example of MPS file . 71
B.12 MIP features . 73
B.13 Specifying predefined basis . 75

C CPLEX LP Format 77
C.1 Prelude . 77
C.2 Objective function definition . 78
C.3 Constraints section . 79
C.4 Bounds section . 80
C.5 General, integer, and binary sections . 81
C.6 End keyword . 81
C.7 Example of CPLEX LP file . 82

D Stand-alone LP/MIP Solver 83

Chapter 1

Introduction

GLPK (GNU Linear Programming Kit) is a set of routines written in the ANSI C pro-
gramming language and organized in the form of a callable library. It is intended for
solving linear programming (LP), mixed integer programming (MIP), and other related
problems.

1.1 LP Problem

GLPK assumes the following formulation of linear programming (LP) problem:

minimize (or maximize)

Z = c1xm+1 + c2xm+2 + . . . + cnxm+n + c0 (1.1)

subject to linear constraints

x1 = a11xm+1 + a12xm+2 + . . . + a1nxm+n

x2 = a21xm+1 + a22xm+2 + . . . + a2nxm+n

.
xm = am1xm+1 + am2xm+2 + . . . + amnxm+n

(1.2)

and bounds of variables

l1 ≤ x1 ≤ u1

l2 ≤ x2 ≤ u2

.
lm+n ≤ xm+n ≤ um+n

(1.3)

where: x1, x2, . . . , xm — auxiliary variables; xm+1, xm+2, . . . , xm+n — structural variables;
Z — objective function; c1, c2, . . . , cn — objective coefficients; c0 — constant term (“shift”)
of the objective function; a11, a12, . . . , amn — constraint coefficients; l1, l2, . . . , lm+n —
lower bounds of variables; u1, u2, . . . , um+n — upper bounds of variables.

Auxiliary variables are also called rows, because they correspond to rows of the con-
straint matrix (i.e. a matrix built of the constraint coefficients). Analogously, structural
variables are also called columns, because they correspond to columns of the constraint
matrix.

Bounds of variables can be finite as well as infinite. Besides, lower and upper bounds
can be equal to each other. Thus, the following types of variables are possible:

7

8

Bounds of variable Type of variable

−∞ < xk < +∞ Free (unbounded) variable
lk ≤ xk < +∞ Variable with lower bound

−∞ < xk ≤ uk Variable with upper bound
lk ≤ xk ≤ uk Double-bounded variable
lk = xk = uk Fixed variable

Note that the types of variables shown above are applicable to structural as well as to
auxiliary variables.

To solve the LP problem (1.1)—(1.3) is to find such values of all structural and aux-
iliary variables, which:

a) satisfy to all the linear constraints (1.2), and

b) are within their bounds (1.3), and

c) provide a smallest (in the case of minimization) or a largest (in the case of maxi-
mization) value of the objective function (1.1).

For solving LP problems GLPK uses a well known numerical procedure called the
simplex method. The simplex method performs iterations, where on each iteration it
transforms the original system of equaility constraints (1.2) resolving them through dif-
ferent sets of variables to an equivalent system called the simplex table (or sometimes the
simplex tableau), which has the following form:

Z = d1(xN)1 + d2(xN)2 + . . . + dn(xN)n

(xB)1 = α11(xN)1 + α12(xN)2 + . . . + α1n(xN)n

(xB)2 = α21(xN)1 + α22(xN)2 + . . . + α2n(xN)n

.
(xB)m = αm1(xN)1 + αm2(xN)2 + . . . + αmn(xN)n

(1.4)

where: (xB)1, (xB)2, . . . , (xB)m — basic variables; (xN)1, (xN)2, . . . , (xN)n — non-basic
variables; d1, d2, . . . , dn — reduced costs; α11, α12, . . . , αmn — coefficients of the simplex
table. (May note that the original LP problem (1.1)—(1.3) also has the form of a simplex
table, where all equalities are resolved through auxiliary variables.)

From the linear programming theory it is well known that if an optimal solution of the
LP problem (1.1)—(1.3) exists, it can always be written in the form (1.4), where non-basic
variables are set on their bounds while values of the objective function and basic variables
are determined by the corresponding equalities of the simplex table.

A set of values of all basic and non-basic variables determined by the simplex table is
called basic solution. If all basic variables are within their bounds, the basic solution is
called (primal) feasible, otherwise it is called (primal) infeasible. A feasible basic solution,
which provides a smallest (in case of minimization) or a largest (in case of maximization)
value of the objective function is called optimal. Therefore, for solving LP problem the
simplex method tries to find its optimal basic solution.

Primal feasibility of some basic solution may be stated by simple checking if all basic
variables are within their bounds. Basic solution is optimal if additionally the following
optimality conditions are satisfied for all non-basic variables:

Status of (xN)j Minimization Maximization

(xN)j is free dj = 0 dj = 0
(xN)j is on its lower bound dj ≥ 0 dj ≤ 0
(xN)j is on its upper bound dj ≤ 0 dj ≥ 0

9

In other words, basic solution is optimal if there is no non-basic variable, which changing
in the feasible direction (i.e. increasing if it is free or on its lower bound, or decreasing
if it is free or on its upper bound) can improve (i.e. decrease in case of minimization or
increase in case of maximization) the objective function.

If all non-basic variables satisfy to the optimality conditions shown above (indepen-
dently on whether basic variables are within their bounds or not), the basic solution is
called dual feasible, otherwise it is called dual infeasible.

It may happen that some LP problem has no primal feasible solution due to incorrect
formulation — this means that its constraints conflict with each other. It also may happen
that some LP problem has unbounded solution again due to incorrect formulation — this
means that some non-basic variable can improve the objective function, i.e. the optimality
conditions are violated, and at the same time this variable can infinitely change in the
feasible direction meeting no resistance from basic variables. (May note that in the latter
case the LP problem has no dual feasible solution.)

1.2 MIP Problem

Mixed integer linear programming (MIP) problem is LP problem in which some variables
are additionally required to be integer.

GLPK assumes that MIP problem has the same formulation as ordinary (pure) LP
problem (1.1)—(1.3), i.e. includes auxiliary and structural variables, which may have lower
and/or upper bounds. However, in case of MIP problem some variables may be required
to be integer. This additional constraint means that a value of each integer variable must
be only integer number. (Should note that GLPK allows only structural variables to be
of integer kind.)

1.3 Brief Example

In order to understand what GLPK is from the user’s standpoint, consider the following
simple LP problem:

maximize

Z = 10x1 + 6x2 + 4x3

subject to

x1 + x2 + x3 ≤ 100
10x1 +4x2 +5x3 ≤ 600
2x1 +2x2 +6x3 ≤ 300

where all variables are non-negative

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

At first this LP problem should be transformed to the standard form (1.1)—(1.3). This
can be easily done by introducing auxiliary variables, by one for each original inequality
constraint. Thus, the problem can be reformulated as follows:

10

maximize

Z = 10x1 + 6x2 + 4x3

subject to
p = x1+ x2+ x3

q =10x1+4x2+5x3

r = 2x1+2x2+6x3

and bounds of variables

−∞ < p ≤ 100 0 ≤ x1 < +∞
−∞ < q ≤ 600 0 ≤ x2 < +∞
−∞ < r ≤ 300 0 ≤ x3 < +∞

where p, q, r are auxiliary variables (rows), and x1, x2, x3 are structural variables (columns).

The example C program shown below uses GLPK API routines in order to solve this
LP problem.

/* sample.c */

#include <stdio.h>

#include <stdlib.h>

#include "glpk.h"

int main(void)

{ LPX *lp;

int ia[1+1000], ja[1+1000];

double ar[1+1000], Z, x1, x2, x3;

s1: lp = lpx_create_prob();

s2: lpx_set_prob_name(lp, "sample");

s3: lpx_set_obj_dir(lp, LPX_MAX);

s4: lpx_add_rows(lp, 3);

s5: lpx_set_row_name(lp, 1, "p");

s6: lpx_set_row_bnds(lp, 1, LPX_UP, 0.0, 100.0);

s7: lpx_set_row_name(lp, 2, "q");

s8: lpx_set_row_bnds(lp, 2, LPX_UP, 0.0, 600.0);

s9: lpx_set_row_name(lp, 3, "r");

s10: lpx_set_row_bnds(lp, 3, LPX_UP, 0.0, 300.0);

s11: lpx_add_cols(lp, 3);

s12: lpx_set_col_name(lp, 1, "x1");

s13: lpx_set_col_bnds(lp, 1, LPX_LO, 0.0, 0.0);

s14: lpx_set_obj_coef(lp, 1, 10.0);

s15: lpx_set_col_name(lp, 2, "x2");

s16: lpx_set_col_bnds(lp, 2, LPX_LO, 0.0, 0.0);

s17: lpx_set_obj_coef(lp, 2, 6.0);

s18: lpx_set_col_name(lp, 3, "x3");

s19: lpx_set_col_bnds(lp, 3, LPX_LO, 0.0, 0.0);

s20: lpx_set_obj_coef(lp, 3, 4.0);

s21: ia[1] = 1, ja[1] = 1, ar[1] = 1.0; /* a[1,1] = 1 */

s22: ia[2] = 1, ja[2] = 2, ar[2] = 1.0; /* a[1,2] = 1 */

11

s23: ia[3] = 1, ja[3] = 3, ar[3] = 1.0; /* a[1,3] = 1 */

s24: ia[4] = 2, ja[4] = 1, ar[4] = 10.0; /* a[2,1] = 10 */

s25: ia[5] = 3, ja[5] = 1, ar[5] = 2.0; /* a[3,1] = 2 */

s26: ia[6] = 2, ja[6] = 2, ar[6] = 4.0; /* a[2,2] = 4 */

s27: ia[7] = 3, ja[7] = 2, ar[7] = 2.0; /* a[3,2] = 2 */

s28: ia[8] = 2, ja[8] = 3, ar[8] = 5.0; /* a[2,3] = 5 */

s29: ia[9] = 3, ja[9] = 3, ar[9] = 6.0; /* a[3,3] = 6 */

s30: lpx_load_matrix(lp, 9, ia, ja, ar);

s31: lpx_simplex(lp);

s32: Z = lpx_get_obj_val(lp);

s33: x1 = lpx_get_col_prim(lp, 1);

s34: x2 = lpx_get_col_prim(lp, 2);

s35: x3 = lpx_get_col_prim(lp, 3);

s36: printf("\nZ = %g; x1 = %g; x2 = %g; x3 = %g\n", Z, x1, x2, x3);

s37: lpx_delete_prob(lp);

return 0;

}

/* eof */

The statement s1 creates a problem object using the routine lpx_create_prob. Being
created the object is initially empty. The statement s2 assigns a symbolic name to the
problem object.

The statement s3 calls the routine lpx_set_obj_dir in order to set the optimization
direction flag, where LPX_MAX means maximization.

The statement s4 adds three rows to the problem object.

The statement s5 assigns the symbolic name ‘p’ to the first row, and the statement s6
sets the type and bounds of the first row, where LPX_UP means that the row has an upper
bound. The statements s7, s8, s9, s10 are used in the same way in order to assign the
symbolic names ‘q’ and ‘r’ to the second and third rows and set their types and bounds.

The statement s11 adds three columns to the problem object.

The statement s12 assigns the symbolic name ‘x1’ to the first column, the statement
s13 sets the type and bounds of the first column, where LPX_LO means that the column has
an lower bound, and the statement s14 sets the objective coefficient for the first column.
The statements s15—s20 are used in the same way in order to assign the symbolic names
‘x2’ and ‘x3’ to the second and third columns and set their types, bounds, and objective
coefficients.

The statements s21—s29 prepare non-zero elements of the constraint matrix (i.e.
constraint coefficients). Row indices of each element are stored in the array ia, column
indices are stored in the array ja, and numerical values of corresponding elements are
stored in the array ar. Then the statement s30 calls the routine lpx_load_matrix, which
loads information from these three arrays into the problem object.

Now all data have been entered into the problem object, and therefore the statement
s31 calls the routine lpx_simplex, which is a driver to the simplex method, in order
to solve the LP problem. This routine finds an optimal solution and stores all relevant
information back into the problem object.

The statement s32 obtains a computed value of the objective function, and the state-
ments s33—s35 obtain computed values of structural variables (columns), which corre-

12

spond to the optimal basic solution found by the solver.
The statement s36 prints the optimal solution to the standard output. The printout

may look like follows:

Z = 733.333; x1 = 33.3333; x2 = 66.6667; x3 = 0

Finally, the statement s37 calls the routine lpx_delete_prob, which frees all the
memory allocated to the problem object.

Chapter 2

API Routines

This chapter describes GLPK API routines intended for using in application programs.

Error handling If some GLPK API routine detects erroneous or incorrect data passed
by the application program, it sends appropriate diagnostic messages to the standard
output and then abnormally terminates the application program. In most practical cases
this allows to simplify programming avoiding numerous checks of return codes. Thus,
in order to prevent crashing the application program should check all data, which are
suspected to be incorrect, before calling GLPK API routines.

Should note that this kind of error handling is used only in cases of incorrect data
passed by the application program. If, for example, the application program calls some
GLPK API routine to read data from an input file and these data are incorrect, the GLPK
API routine reports about error in the usual way by means of return code.

Thread safety Currently GLPK API routines are non-reentrant and therefore cannot
be used in multi-thread programs.

Array indexing Normally all GLPK routines start array indexing from 1, not from 0
(except the specially stipulated cases). This means, for example, if some vector x of the
length n is passed as an array to some GLPK routine, the latter expects vector components
to be placed in locations x[1], x[2], . . . , x[n], and the location x[0] normally is not
used.

In order to avoid indexing errors it is most convenient and most reliable to declare the
array x as follows:

double x[1+n];

or to allocate it as follows:

double *x;

. . .

x = calloc(1+n, sizeof(double));

In both cases one extra location x[0] is reserved that allows passing this array to GLPK
routines in a usual way.

13

14

Using GLPK routines in C++ programs If you need to use GLPK routines in
C++ programs, use the following construction:

extern "C" {

#include "glpk.h"

}

2.1 Problem object

GLPK API routines deal with so called problem objects, which are program objects of type
LPX intended to represent particular LP and MIP problem instances.

The type LPX is a data structure declared in the header file glpk.h as follows:

typedef struct { ... } LPX;

Problem objects (i.e. program objects of the LPX type) are allocated and managed
internally by the GLPK API routines. The application program should never use any
members of the LPX structure directly and should deal only with pointers to these objects
(that is, LPX * values).

Each problem object consists of four logical segments, which are:

• problem segment,

• basis segment,

• interior point segment,

• MIP segment, and

• control parameters and statistics segment.

Problem segment The problem segment contains original LP/MIP data, which corre-
sponds to the problem formulation (1.1)—(1.3) (see Section 1.1, page 7):

• rows (auxiliary variables),

• columns (structural variables),

• objective function, and

• constraint matrix.

Rows and columns have the same set of the following attributes:

• ordinal number,

• symbolic name (1 up to 255 arbitrary graphic characters),

• type (free, lower bound, upper bound, double bound, fixed),

• numerical values of lower and upper bounds,

• scale factor.

Ordinal numbers are intended for referencing rows and columns. Row ordinal numbers
are integers 1, 2, . . . , m, and column ordinal numbers are integers 1, 2, . . . , n, where m and
n are, respectively, the current number of rows and columns in the problem object.

Symbolic names are intended only for informational purposes. They cannot be used
for referencing rows and columns.

Types and bounds of rows (auxiliary variables) and columns (structural variables) are
explained above (see Section 1.1, page 7).

Scale factors are used internally for scaling corresponding rows and columns of the
constraint matrix.

15

Information about the objective function includes numerical values of objective coef-
ficients and a flag, which defines the optimization direction (i.e. minimization or maxi-
mization).

The constraint matrix is a m×n rectangular matrix built of constraint coefficients aij ,
which defines the system of linear constraints (1.2) (see Section 1.1, page 7). This matrix
is stored in the problem object in both row-wise and column-wise sparse formats.

Once the problem object has been created, the application program can access and
modify any components of the problem segment in arbitrary order.

Basis segment The basis segment of the problem object keeps information related to a
current basic solution. This information includes:

• row and column statuses,

• basic solution statuses,

• factorization of the current basis matrix, and

• basic solution components.

The row and column statuses define which rows and columns are basic and which are
non-basic. These statuses may be assigned either by the application program of by some
API routines. Note that these statuses are always defined independently on whether the
corresponding basis is valid or not.

The basic solution statuses include the primal status and the dual status, which are set
by the simplex-based solver once the problem has been solved. The primal status shows
whether a primal basic solution is feasible, infeasible, or undefined. The dual status shows
the same for a dual basic solution.

The factorization of the basis matrix is some factorized form (like LU-factorization) of
the current basis matrix (defined by the current row and column statuses). The factoriza-
tion is used by the simplex-based solver and kept when the solver terminates the search.
This feature allows efficiently reoptimizing the problem after some modifications (for ex-
ample, after changing some bounds or objective coefficients). It also allows performing a
post-optimal analysis (for example, computing components of the simplex table, etc.).

The basic solution components include primal and dual values of all auxiliary and
structural variables for the most recently obtained basic solution.

Interior point segment The interior point segment is automatically allocated after the
problem has been solved using the interior point solver. It contains interior point solution
components, which include the solution status, and primal and dual values of all auxiliary
and structural variables.

MIP segment The MIP segment is used only for MIP problems. This segment includes:

• column kinds,

• MIP solution status, and

• MIP solution components.

The column kinds define which columns (i.e. structural variables) are integer and
which are continuous.

The MIP solution status is set by the MIP solver and shows whether a MIP solution
is integer optimal, integer feasible (non-optimal), or undefined.

The MIP solution components are computed by the MIP solver and includes primal
values of all auxiliary and structural variables for the most recently obtained MIP solution.

16

Note that in the case of MIP problem the basis segment corresponds to an optimal
solution of LP relaxation, which is also available to the application program.

Currently the search tree is not kept in the MIP segment. Therefore if the search has
been terminated, it cannot be continued.

Control parameters and statistics segment This segment contains a fixed set of
parameters, where each parameter has the following three attributes:

• code,
• type, and
• current value.
The parameter code is intended for referencing a particular parameter. All the param-

eter codes have symbolic names, which are macros defined in the header file glpk.h. Note
that the parameter codes are distinct positive integers.

The parameter type can be integer, real (floating-point), and text (character string).
The parameter value is its current value kept in the problem object. Initially (after

the problem object has been created) all parameters are assigned some default values.
Parameters are intended for several purposes. Some of them, which are called control

parameters, affect the behavior of API routines (for example, the parameter LPX_K_ITLIM
limits maximal number of simplex iterations available to the solver). Others, which are
called statistics, just represent some additional information about the problem object (for
example, the parameter LPX_K_ITCNT shows how many simplex iterations were performed
for a particular problem object).

17

2.2 Problem creating and modifying routines

2.2.1 lpx create prob — create problem object

Synopsis

#include "glpk.h"

LPX *lpx_create_prob(void);

Description The routine lpx_create_prob creates a new problem object, which is
“empty”, i.e. has no rows and no columns.

Returns The routine returns a pointer to the created object, which should be used in
any subsequent operations on this object.

2.2.2 lpx set prob name — assign (change) problem name

Synopsis

#include "glpk.h"

void lpx_set_prob_name(LPX *lp, char *name);

Description The routine lpx_set_prob_name assigns a given symbolic name (1 up to
255 characters) to the specified problem object.

If the parameter name is NULL or empty string, the routine erases an existing symbolic
name of the problem object.

2.2.3 lpx set obj name — assign (change) objective function name

Synopsis

#include "glpk.h"

void lpx_set_obj_name(LPX *lp, char *name);

Description The routine lpx_set_obj_name assigns a given symbolic name (1 up to
255 characters) to the objective function of the specified problem object.

If the parameter name is NULL or empty string, the routine erases an existing symbolic
name of the objective function.

2.2.4 lpx set obj dir — set (change) optimization direction flag

Synopsis

#include "glpk.h"

void lpx_set_obj_dir(LPX *lp, int dir);

18

Description The routine lpx_set_obj_dir sets (changes) the optimization direction
flag (i.e. “sense” of the objective function) as specified by the parameter dir:

LPX_MIN minimization;
LPX_MAX maximization.

2.2.5 lpx add rows — add new rows to problem object

Synopsis

#include "glpk.h"

int lpx_add_rows(LPX *lp, int nrs);

Description The routine lpx_add_rows adds nrs rows (constraints) to the specified
problem object. New rows are always added to the end of the row list, so the ordinal
numbers of existing rows are not changed.

Being added each new row is initially free (unbounded) and has empty list of the
constraint coefficients.

Returns The routine lpx_add_rows returns the ordinal number of the first new row
added to the problem object.

2.2.6 lpx add cols — add new columns to problem object

Synopsis

#include "glpk.h"

int lpx_add_cols(LPX *lp, int ncs);

Description The routine lpx_add_cols adds ncs columns (structural variables) to the
specified problem object. New columns are always added to the end of the column list, so
the ordinal numbers of existing columns are not changed.

Being added each new column is initially fixed at zero and has empty list of the
constraint coefficients.

Returns The routine lpx_add_cols returns the ordinal number of the first new column
added to the problem object.

2.2.7 lpx set row name — assign (change) row name

Synopsis

#include "glpk.h"

void lpx_set_row_name(LPX *lp, int i, char *name);

19

Description The routine lpx_set_row_name assigns a given symbolic name (1 up to
255 characters) to i-th row (auxiliary variable) of the specified problem object.

If the parameter name is NULL or empty string, the routine erases an existing name of
i-th row.

2.2.8 lpx set col name — assign (change) column name

Synopsis

#include "glpk.h"

void lpx_set_col_name(LPX *lp, int j, char *name);

Description The routine lpx_set_col_name assigns a given symbolic name (1 up to
255 characters) to j-th column (structural variable) of the specified problem object.

If the parameter name is NULL or empty string, the routine erases an existing name of
j-th column.

2.2.9 lpx set row bnds — set (change) row bounds

Synopsis

#include "glpk.h"

void lpx_set_row_bnds(LPX *lp, int i, int type, double lb, double ub);

Description The routine lpx_set_row_bnds sets (changes) the type and bounds of i-th
row (auxiliary variable) of the specified problem object.

The parameters type, lb, and ub specify the type, lower bound, and upper bound,
respectively, as follows:

Type Bounds Comment

LPX_FR −∞ < x < +∞ Free (unbounded) variable
LPX_LO lb ≤ x < +∞ Variable with lower bound
LPX_UP −∞ < x ≤ ub Variable with upper bound
LPX_DB lb ≤ x ≤ ub Double-bounded variable
LPX_FX lb = x = ub Fixed variable

where x is the auxiliary variable associated with i-th row.
If the row has no lower bound, the parameter lb is ignored. If the row has no upper

bound, the parameter ub is ignored. If the row is an equality constraint (i.e. the cor-
responding auxiliary variable is of fixed type), only the parameter lb is used while the
parameter ub is ignored.

2.2.10 lpx set col bnds — set (change) column bounds

Synopsis

#include "glpk.h"

void lpx_set_col_bnds(LPX *lp, int j, int type, double lb, double ub);

20

Description The routine lpx_set_col_bnds sets (changes) the type and bounds of j-th
column (structural variable) of the specified problem object.

The parameters type, lb, and ub specify the type, lower bound, and upper bound,
respectively, as follows:

Type Bounds Comment

LPX_FR −∞ < x < +∞ Free (unbounded) variable
LPX_LO lb ≤ x < +∞ Variable with lower bound
LPX_UP −∞ < x ≤ ub Variable with upper bound
LPX_DB lb ≤ x ≤ ub Double-bounded variable
LPX_FX lb = x = ub Fixed variable

where x is the structural variable associated with j-th column.

If the column has no lower bound, the parameter lb is ignored. If the column has
no upper bound, the parameter ub is ignored. If the column is of fixed type, only the
parameter lb is used while the parameter ub is ignored.

2.2.11 lpx set obj coef — set (change) objective coefficient or constant
term

Synopsis

#include "glpk.h"

void lpx_set_obj_coef(LPX *lp, int j, double coef);

Description The routine lpx_set_obj_coef sets (changes) the objective coefficient at
j-th column (structural variable). A new value of the objective coefficient is specified by
the parameter coef.

If the parameter j is 0, the routine sets (changes) the constant term (“shift”) of the
objective function.

2.2.12 lpx set mat row — set (replace) row of the constraint matrix

Synopsis

#include "glpk.h"

void lpx_set_mat_row(LPX *lp, int i, int len, int ind[], double val[]);

Description The routine lpx_set_mat_row stores (replaces) the contents of i-th row
of the constraint matrix of the specified problem object.

Column indices and numerical values of new row elements must be placed in locations
ind[1], . . . , ind[len] and val[1], . . . , val[len], respectively, where 0 ≤ len ≤ n is the
new length of i-th row, n is the current number of columns in the problem object. Note
that zero elements as well as elements with identical column indices are not allowed.

If the parameter len is 0, the parameters ind and/or val can be specified as NULL.

21

2.2.13 lpx set mat col — set (replace) column of the constraint matrix

Synopsis

#include "glpk.h"

void lpx_set_mat_col(LPX *lp, int j, int len, int ind[], double val[]);

Description The routine lpx_set_mat_col stores (replaces) the contents of j-th col-
umn of the constraint matrix of the specified problem object.

Row indices and numerical values of new column elements must be placed in locations
ind[1], . . . , ind[len] and val[1], . . . , val[len], respectively, where 0 ≤ len ≤ m is
the new length of j-th column, m is the current number of rows in the problem object.
Note that zero elements as well as elements with identical row indices are not allowed.

If the parameter len is 0, the parameters ind and/or val can be specified as NULL.

2.2.14 lpx load matrix — load (replace) the whole constraint matrix

Synopsis

#include "glpk.h"

void lpx_load_matrix(LPX *lp, int ne, int ia[], int ja[], double ar[]);

Description The routine lpx_load_matrix loads the constraint matrix passed in the
arrays ia, ja, and ar into the specified problem object. Before loading the current contents
of the constraint matrix is destroyed.

Constraint coefficients (elements of the constraint matrix) must be specified as triplets
(ia[k], ja[k], ar[k]) for k = 1, . . . , ne, where ia[k] is the row index, ja[k] is the
column index, and ar[k] is a numeric value of corresponding constraint coefficient. The
parameter ne specifies the total number of (non-zero) elements in the matrix to be loaded.
Note that coefficients with identical indices as well as zero coefficients are not allowed.

If the parameter ne is 0, the parameters ia, ja, and/or ar can be specified as NULL.

2.2.15 lpx del rows — delete rows from problem object

Synopsis

#include "glpk.h"

void lpx_del_rows(LPX *lp, int nrs, int num[]);

Description The routine lpx_del_rows deletes specified rows from a problem object,
which the parameter lp points to. Ordinal numbers of rows to be deleted must be placed
in locations num[1], . . . , num[nrs], where nrs > 0.

Note that deleting rows involves changing ordinal numbers of other rows remaining
in the problem object. New ordinal numbers of the remaining rows are assigned under
the assumption that the original order of rows is not changed. Let, for example, before
deletion there be five rows a, b, c, d, e with ordinal numbers 1, 2, 3, 4, 5, and let rows b
and d have been deleted. Then after deletion the remaining rows a, c, e are assigned new
oridinal numbers 1, 2, 3.

22

2.2.16 lpx del cols — delete columns from problem object

Synopsis

#include "glpk.h"

void lpx_del_cols(LPX *lp, int ncs, int num[]);

Description The routine lpx_del_cols deletes specified columns from a problem ob-
ject, which the parameter lp points to. Ordinal numbers of columns to be deleted must
be placed in locations num[1], . . . , num[ncs], where ncs > 0.

Note that deleting columns involves changing ordinal numbers of other columns re-
maining in the problem object. New ordinal numbers of the remaining columns are as-
signed under the assumption that the original order of columns is not changed. Let, for
example, before deletion there be six columns p, q, r, s, t, u with ordinal numbers 1, 2,
3, 4, 5, 6, and let columns p, q, s have been deleted. Then after deletion the remaining
columns r, t, u are assigned new ordinal numbers 1, 2, 3.

2.2.17 lpx delete prob — delete problem object

Synopsis

#include "glpk.h"

void lpx_delete_prob(LPX *lp);

Description The routine lpx_delete_prob deletes a problem object, which the param-
eter lp points to, freeing all the memory allocated to this object.

23

2.3 Problem retrieving routines

2.3.1 lpx get prob name — retrieve problem name

Synopsis

#include "glpk.h"

char *lpx_get_prob_name(LPX *lp);

Returns The routine lpx_get_prob_name returns a pointer to an internal buffer, which
contains symbolic name of the problem. However, if the problem has no assigned name,
the routine returns NULL.

2.3.2 lpx get obj name — retrieve objective function name

Synopsis

#include "glpk.h"

char *lpx_get_obj_name(LPX *lp);

Returns The routine lpx_get_obj_name returns a pointer to an internal buffer, which
contains symbolic name assigned to the objective function. However, if the objective
function has no assigned name, the routine returns NULL.

2.3.3 lpx get obj dir — retrieve optimization direction flag

Synopsis

#include "glpk.h"

int lpx_get_obj_dir(LPX *lp);

Returns The routine lpx_get_obj_dir returns the optimization direction flag (i.e.
“sense” of the objective function):

LPX_MIN minimization;
LPX_MAX maximization.

2.3.4 lpx get num rows — retrieve number of rows

Synopsis

#include "glpk.h"

int lpx_get_num_rows(LPX *lp);

Returns The routine lpx_get_num_rows returns the current number of rows in the
specified problem object.

24

2.3.5 lpx get num cols — retrieve number of columns

Synopsis

#include "glpk.h"

int lpx_get_num_cols(LPX *lp);

Returns The routine lpx_get_num_cols returns the current number of columns the
specified problem object.

2.3.6 lpx get row name — retrieve row name

Synopsis

#include "glpk.h"

char *lpx_get_row_name(LPX *lp, int i);

Returns The routine lpx_get_row_name returns a pointer to an internal buffer, which
contains a symbolic name assigned to i-th row. However, if the row has no assigned name,
the routine returns NULL.

2.3.7 lpx get col name — retrieve column name

Synopsis

#include "glpk.h"

char *lpx_get_col_name(LPX *lp, int j);

Returns The routine lpx_get_col_name returns a pointer to an internal buffer, which
contains a symbolic name assigned to j-th column. However, if the column has no assigned
name, the routine returns NULL.

2.3.8 lpx get row type — retrieve row type

Synopsis

#include "glpk.h"

int lpx_get_row_type(LPX *lp, int i);

Returns The routine lpx_get_row_type returns the type of i-th row, i.e. the type of
corresponding auxiliary variable, as follows:

LPX_FR free (unbounded) variable;
LPX_LO variable with lower bound;
LPX_UP variable with upper bound;
LPX_DB double-bounded variable;
LPX_FX fixed variable.

25

2.3.9 lpx get row lb — retrieve row lower bound

Synopsis

#include "glpk.h"

double lpx_get_row_lb(LPX *lp, int i);

Returns The routine lpx_get_row_lb returns the lower bound of i-th row, i.e. the
lower bound of corresponding auxiliary variable. However, if the row has no lower bound,
the routine returns zero.

2.3.10 lpx get row ub — retrieve row upper bound

Synopsis

#include "glpk.h"

double lpx_get_row_ub(LPX *lp, int i);

Returns The routine lpx_get_row_ub returns the upper bound of i-th row, i.e. the
upper bound of corresponding auxiliary variable. However, if the row has no upper bound,
the routine returns zero.

2.3.11 lpx get col type — retrieve column type

Synopsis

#include "glpk.h"

int lpx_get_col_type(LPX *lp, int j);

Returns The routine lpx_get_col_type returns the type of j-th column, i.e. the type
of corresponding structural variable, as follows:

LPX_FR free (unbounded) variable;
LPX_LO variable with lower bound;
LPX_UP variable with upper bound;
LPX_DB double-bounded variable;
LPX_FX fixed variable.

2.3.12 lpx get col lb — retrieve column lower bound

Synopsis

#include "glpk.h"

double lpx_get_col_lb(LPX *lp, int j);

Returns The routine lpx_get_col_lb returns the lower bound of j-th column, i.e. the
lower bound of corresponding structural variable. However, if the column has no lower
bound, the routine returns zero.

26

2.3.13 lpx get col ub — retrieve column upper bound

Synopsis

#include "glpk.h"

double lpx_get_col_ub(LPX *lp, int j);

Returns The routine lpx_get_col_ub returns the upper bound of j-th column, i.e. the
upper bound of corresponding structural variable. However, if the column has no upper
bound, the routine returns zero.

2.3.14 lpx get obj coef — retrieve objective coefficient or constant term

Synopsis

#include "glpk.h"

double lpx_get_obj_coef(LPX *lp, int j);

Returns The routine lpx_get_obj_coef returns the objective coefficient at j-th struc-
tural variable (column).

If the parameter j is 0, the routine returns the constant term (“shift”) of the objective
function.

2.3.15 lpx get num nz — retrieve number of constraint coefficients

Synopsis

#include "glpk.h"

int lpx_get_num_nz(LPX *lp);

Returns The routine lpx_get_num_nz returns the number of non-zero elements in the
constraint matrix of the specified problem object.

2.3.16 lpx get mat row — retrieve row of the constraint matrix

Synopsis

#include "glpk.h"

int lpx_get_mat_row(LPX *lp, int i, int ind[], double val[]);

Description The routine lpx_get_mat_row scans (non-zero) elements of i-th row of the
constraint matrix of the specified problem object and stores their column indices and nu-
meric values to locations ind[1], . . . , ind[len] and val[1], . . . , val[len], respectively,
where 0 ≤ len ≤ n is the number of elements in i-th row, n is the number of columns.

The parameter ind and/or val can be specified as NULL, in which case corresponding
information is not stored.

27

Returns The routine lpx_get_mat_row returns the length len, i.e. the number of
(non-zero) elements in i-th row.

2.3.17 lpx get mat col — retrieve column of the constraint matrix

Synopsis

#include "glpk.h"

int lpx_get_mat_col(LPX *lp, int j, int ind[], double val[]);

Description The routine lpx_get_mat_col scans (non-zero) elements of j-th column
of the constraint matrix of the specified problem object and stores their row indices and
numeric values to locations ind[1], . . . , ind[len] and val[1], . . . , val[len], respec-
tively, where 0 ≤ len ≤ m is the number of elements in j-th column, m is the number of
rows.

The parameter ind and/or val can be specified as NULL, in which case corresponding
information is not stored.

Returns The routine lpx_get_mat_col returns the length len, i.e. the number of
(non-zero) elements in j-th column.

28

2.4 Problem scaling routines

2.4.1 lpx scale prob — scale problem data

Synopsis

#include "glpk.h"

void lpx_scale_prob(LPX *lp);

Description The routine lpx_scale_prob performs scaling of problem data for the
specified problem object.

The purpose of scaling is to provide such scaling (diagonal) matrices R and S that
the scaled constraint matrix A′ = RAS has better numerical properties than the original
constraint matrix A.

Note that the scaling matrices R and S are used only by the solver. On API level the
scaling is invisible, since all data stored in the problem object are non-scaled.

2.4.2 lpx unscale prob — unscale problem data

Synopsis

#include "glpk.h"

void lpx_unscale_prob(LPX *lp);

The routine lpx_unscale_prob performs unscaling of problem data for the specified
problem object.

“Unscaling” means replacing the current scaling matrices R and S by unity matrices
that cancels the scaling effect.

29

2.5 LP basis constructing routines

2.5.1 lpx std basis — construct standard initial LP basis

Synopsis

#include "glpk.h"

void lpx_std_basis(LPX *lp);

Description The routine lpx_std_basis constructs the “standard” (trivial) initial LP
basis for the specified problem object.

In the “standard” LP basis all auxiliary variables (rows) are basic, and all structural
variables (columns) are non-basic (so the corresponding basis matrix is unity).

2.5.2 lpx adv basis — construct advanced initial LP basis

Synopsis

#include "glpk.h"

void lpx_adv_basis(LPX *lp);

Description The routine lpx_adv_basis build an advanced initial LP basis for the
specified problem object.

In order to construct the advanced initial LP basis the routine does the following:
1) includes in the basis all non-fixed auxiliary variables;
2) includes in the basis as many non-fixed structural variables as possible keeping

triangular form of the basis matrix;
3) includes in the basis appropriate (fixed) auxiliary variables to complete the basis.
As a result the initial LP basis has as few fixed variables as possible and the corre-

sponding basis matrix is triangular.

2.5.3 lpx set row stat — set (change) row status

Synopsis

#include "glpk.h"

void lpx_set_row_stat(LPX *lp, int i, int stat);

Description The routine lpx_set_row_stat sets (changes) the current status of i-th
row (auxiliary variable) as specified by the parameter stat:

LPX_BS make the row basic (make the constraint inactive);
LPX_NL make the row non-basic (make the constraint active);
LPX_NU make the row non-basic and set it to the upper bound; if the row is not

double-bounded, this status is equivalent to LPX_NL (only in the case of this
routine);

LPX_NF the same as LPX_NL (only in the case of this routine);
LPX_NS the same as LPX_NL (only in the case of this routine).

30

2.5.4 lpx set col stat — set (change) column status

Synopsis

#include "glpk.h"

void lpx_set_col_stat(LPX *lp, int j, int stat);

Description The routine lpx_set_col_stat sets (changes) the current status of j-th
column (structural variable) as specified by the parameter stat:

LPX_BS make the column basic;
LPX_NL make the column non-basic;
LPX_NU make the column non-basic and set it to the upper bound; if the column is

not double-bounded, this status is equivalent to LPX_NL (only in the case of
this routine);

LPX_NF the same as LPX_NL (only in the case of this routine);
LPX_NS the same as LPX_NL (only in the case of this routine).

31

2.6 Simplex method routine

2.6.1 lpx simplex — solve LP problem using the simplex method

Synopsis

#include "glpk.h"

int lpx_simplex(LPX *lp);

Description The routine lpx_simplex is an interface to an LP problem solver based
on the two-phase revised simplex method.

This routine obtains problem data from the problem object, which the parameter lp

points to, calls the solver to solve the LP problem, and stores an obtained basic solution
and other relevant information back into the problem object.

Since solving of large-scale problems may take a long time, the solver reports some
information about the current basic solution, which is sent to the standard output. This
information has the following format:

*nnn: objval = xxx infeas = yyy (ddd)

where: ‘nnn’ is the iteration number, ‘xxx’ is the current value of the objective function
(which is unscaled and has correct sign), ‘yyy’ is the current sum of primal infeasibilities
(which is scaled and therefore may be used for visual estimating only), ‘ddd’ is the current
number of fixed basic variables. If the asterisk ‘*’ precedes to ‘nnn’, the solver is searching
for an optimal solution (phase II), otherwise the solver is searching for a primal feasible
solution (phase I).

Note that the simplex solver currently implemented in GLPK is not perfect. Although
it has been successfully tested on a wide set of LP problems, there are hard problems,
which cannot be solved by the GLPK simplex solver.

Using built-in LP presolver The simplex solver has built-in LP presolver, which is
a subprogram that transforms the original LP problem specified in the problem object
to an equivalent LP problem, which may be easier for solving with the simplex method
than the original one. This is attained mainly due to reducing the problem size and
improving its numeric properties (for example, by removing some inactive constraints or
by fixing some non-basic variables). Once the transformed LP problem has been solved,
the presolver transforms its basic solution back to a corresponding basic solution of the
original problem.

Presolving is an optional feature of the routine lpx_simplex, and by default it is
disabled. In order to enable the LP presolver the user should set the control parameter
LPX_K_PRESOL on (see Subsection 2.11.6, page 54) before calling the routine lpx_simplex.
As a rule presolving is useful when the problem is solved for the first time, and it is not
recommended to use presolving when the problem should be re-optimized.

The presolving procedure is transparent to the API user in the sense that all necessary
processing is performed internally, and a basic solution of the original problem recovered
by the presolver is the same as if it were computed directly, i.e. without presolving.

32

Note that the presolver is able to recover only optimal solutions. If a computed solution
is infeasible or non-optimal, the corresponding solution of the original problem cannot be
recovered and therefore remains undefined. If the user needs to know a basic solution even
if it is infeasible or non-optimal, the presolver must be disabled.

Returns If the LP presolver is disabled (the flag LPX_K_PRESOL is off), the routine
lpx_simplex returns one of the following exit codes:

LPX_E_OK the LP problem has been successfully solved. (Note that, for exam-
ple, if the problem has no feasible solution, this exit code is reported.)

LPX_E_FAULT unable to start the search because either the problem has no
rows/columns, or the initial basis is invalid, or the initial basis matrix
is singular or ill-conditioned.

LPX_E_OBJLL the search was prematurely terminated because the objective func-
tion being maximized has reached its lower limit and continues de-
creasing (the dual simplex only).

LPX_E_OBJUL the search was prematurely terminated because the objective func-
tion being minimized has reached its upper limit and continues in-
creasing (the dual simplex only).

LPX_E_ITLIM the search was prematurely terminated because the simplex itera-
tions limit has been exceeded.

LPX_E_TMLIM the search was prematurely terminated because the time limit has
been exceeded.

LPX_E_SING the search was prematurely terminated due to the solver failure (the
current basis matrix got singular or ill-conditioned).

If the LP presolver is enabled (the flag LPX_K_PRESOL is on), the routine lpx_simplex
returns one of the following exit codes:

LPX_E_OK optimal solution of the LP problem has been found.
LPX_E_FAULT the LP problem has no rows and/or columns.
LPX_E_NOPFS the LP problem has no primal feasible solution.
LPX_E_NODFS the LP problem has no dual feasible solution.
LPX_E_ITLIM same as above.
LPX_E_TMLIB same as above.
LPX_E_SING same as above.

33

2.7 Basic solution retrieving routines

2.7.1 lpx get status — retrieve generic status of basic solution

Synopsis

#include "glpk.h"

int lpx_get_status(LPX *lp);

Returns The routine lpx_get_status reports the generic status of the current basic
solution for the specified problem object as follows:

LPX_OPT solution is optimal;
LPX_FEAS solution is feasible;
LPX_INFEAS solution is infeasible;
LPX_NOFEAS problem has no feasible solution;
LPX_UNBND problem has unbounded solution;
LPX_UNDEF solution is undefined.
More detailed information about the status of basic solution can be retrieved using

the routines lpx_get_prim_stat and lpx_get_dual_stat.

2.7.2 lpx get prim stat — retrieve primal status of basic solution

Synopsis

#include "glpk.h"

int lpx_get_prim_stat(LPX *lp);

Returns The routine lpx_get_prim_stat reports the primal status of the basic solution
for the specified problem object as follows:

LPX_P_UNDEF primal solution is undefined;
LPX_P_FEAS solution is primal feasible;
LPX_P_INFEAS solution is primal infeasible;
LPX_P_NOFEAS no primal feasible solution exists.

2.7.3 lpx get dual stat — retrieve dual status of basic solution

Synopsis

#include "glpk.h"

int lpx_get_dual_stat(LPX *lp);

Returns The routine lpx_get_dual_stat reports the dual status of the basic solution
for the specified problem object as follows:

LPX_D_UNDEF dual solution is undefined;
LPX_D_FEAS solution is dual feasible;
LPX_D_INFEAS solution is dual infeasible;
LPX_D_NOFEAS no dual feasible solution exists.

34

2.7.4 lpx get obj val — retrieve objective value

Synopsis

#include "glpk.h"

double lpx_get_obj_val(LPX *lp);

Returns The routine lpx_get_obj_val returns current value of the objective function.

2.7.5 lpx get row stat — retrieve row status

Synopsis

#include "glpk.h"

int lpx_get_row_stat(LPX *lp, int i);

Returns The routine lpx_get_row_stat returns current status assigned to the auxiliary
variable associated with i-th row as follows:

LPX_BS basic variable;
LPX_NL non-basic variable on its lower bound;
LPX_NU non-basic variable on its upper bound;
LPX_NF non-basic free (unbounded) variable;
LPX_NS non-basic fixed variable.

2.7.6 lpx get row prim — retrieve row primal value

Synopsis

#include "glpk.h"

double lpx_get_row_prim(LPX *lp, int i);

Returns The routine lpx_get_row_prim returns primal value of the auxiliary variable
associated with i-th row.

2.7.7 lpx get row dual — retrieve row dual value

Synopsis

#include "glpk.h"

double lpx_get_row_dual(LPX *lp, int i);

Returns The routine lpx_get_row_dual returns dual value (i.e. reduced cost) of the
auxiliary variable associated with i-th row.

35

2.7.8 lpx get col stat — retrieve column status

Synopsis

#include "glpk.h"

int lpx_get_col_stat(LPX *lp, int j);

Returns The routine lpx_get_col_stat returns current status assigned to the struc-
tural variable associated with j-th column as follows:

LPX_BS basic variable;
LPX_NL non-basic variable on its lower bound;
LPX_NU non-basic variable on its upper bound;
LPX_NF non-basic free (unbounded) variable;
LPX_NS non-basic fixed variable.

2.7.9 lpx get col prim — retrieve column primal value

Synopsis

#include "glpk.h"

double lpx_get_col_prim(LPX *lp, int j);

Returns The routine lpx_get_col_prim returns primal value of the structural variable
associated with j-th column.

2.7.10 lpx get col dual — retrieve column dual value

Synopsis

#include "glpk.h"

double lpx_get_col_dual(LPX *lp, int j);

Returns The routine lpx_get_col_dual returns dual value (i.e. reduced cost) of the
structural variable associated with j-th column.

2.7.11 lpx get ray info — retrieve non-basic variable which causes un-
boundness

Synopsis

#include "glpk.h"

int lpx_get_ray_info(LPX *lp);

36

Returns The routine lpx_get_ray_info returns the number k of some non-basic vari-
able xk, which causes primal unboundness. If such a variable cannot be identified, the
routine returns zero.

If 1 ≤ k ≤ m, xk is k-th auxiliary variable, and if m+1 ≤ k ≤ m+n, xk is (k−m)-th
structural variable, where m is the number of rows, n is the number of columns in the
specified problem object.

“Unboundness” means that the variable xk is non-basic and able to infinitely change
in a feasible direction improving the objective function.

2.7.12 lpx check kkt — check Karush-Kuhn-Tucker conditions

Synopsis

#include "glpk.h"

void lpx_check_kkt(LPX *lp, int scaled, LPXKKT *kkt);

Description The routine lpx_check_kkt checks Karush-Kuhn-Tucker optimality con-
ditions for basic solution. It is assumed that both primal and dual components of basic
solution are valid.

If the parameter scaled is zero, the optimality conditions are checked for the original,
unscaled LP problem. Otherwise, if the parameter scaled is non-zero, the routine checks
the conditions for an internally scaled LP problem.

The parameter kkt is a pointer to the structure LPXKKT, to which the routine stores
the results of checking. Members of this structure are shown in the table below.

Condition Member Comment

(KKT.PE) pe_ae_max Largest absolute error
pe_ae_row Number of row with largest absolute error
pe_re_max Largest relative error
pe_re_row Number of row with largest relative error
pe_quality Quality of primal solution

(KKT.PB) pb_ae_max Largest absolute error
pb_ae_ind Number of variable with largest absolute error
pb_re_max Largest relative error
pb_re_ind Number of variable with largest relative error
pb_quality Quality of primal feasibility

(KKT.DE) de_ae_max Largest absolute error
de_ae_col Number of column with largest absolute error
de_re_max Largest relative error
de_re_col Number of column with largest relative error
de_quality Quality of dual solution

(KKT.DB) db_ae_max Largest absolute error
db_ae_ind Number of variable with largest absolute error
db_re_max Largest relative error
db_re_ind Number of variable with largest relative error
db_quality Quality of dual feasibility

The routine performs all computations using only components of the given LP problem
and the current basic solution.

37

Background The first condition checked by the routine is:

xR − AxS = 0, (KKT.PE)

where xR is the subvector of auxiliary variables (rows), xS is the subvector of structural
variables (columns), A is the constraint matrix. This condition expresses the requirement
that all primal variables must satisfy to the system of equality constraints of the original
LP problem. In case of exact arithmetic this condition would be satisfied for any basic
solution; however, in case of inexact (floating-point) arithmetic, this condition shows how
accurate the primal basic solution is, that depends on accuracy of a representation of the
basis matrix used by the simplex method routines.

The second condition checked by the routine is:

lk ≤ xk ≤ uk for all k = 1, . . . , m + n, (KKT.PB)

where xk is auxiliary (1 ≤ k ≤ m) or structural (m + 1 ≤ k ≤ m + n) variable, lk and
uk are, respectively, lower and upper bounds of the variable xk (including cases of infinite
bounds). This condition expresses the requirement that all primal variables must satisfy
to bound constraints of the original LP problem. Since in case of basic solution all non-
basic variables are placed on their bounds, actually the condition (KKT.PB) needs to be
checked for basic variables only. If the primal basic solution has sufficient accuracy, this
condition shows primal feasibility of the solution.

The third condition checked by the routine is:

grad Z = c = (Ã)T π + d,

where Z is the objective function, c is the vector of objective coefficients, (Ã)T is a matrix
transposed to the expanded constraint matrix Ã = (I| − A), π is a vector of Lagrange
multipliers that correspond to equality constraints of the original LP problem, d is a
vector of Lagrange multipliers that correspond to bound constraints for all (auxiliary
and structural) variables of the original LP problem. Geometrically the third condition
expresses the requirement that the gradient of the objective function must belong to
the orthogonal complement of a linear subspace defined by the equality and active bound
constraints, i.e. that the gradient must be a linear combination of normals to the constraint
planes, where Lagrange multipliers π and d are coefficients of that linear combination.

To eliminate the vector π the third condition can be rewritten as:
(

I
−AT

)

π =

(

dR

dS

)

+

(

cR

cS

)

,

or, equivalently:
π + dR = cR,

−AT π + dS = cS .

Then substituting the vector π from the first equation into the second one we have:

AT (dR − cR) + (dS − cS) = 0, (KKT.DE)

where dR is the subvector of reduced costs of auxiliary variables (rows), dS is the subvector
of reduced costs of structural variables (columns), cR and cS are subvectors of objective
coefficients at, respectively, auxiliary and structural variables, AT is a matrix transposed

38

to the constraint matrix of the original LP problem. In case of exact arithmetic this con-
dition would be satisfied for any basic solution; however, in case of inexact (floating-point)
arithmetic, this condition shows how accurate the dual basic solution is, that depends on
accuracy of a representation of the basis matrix used by the simplex method routines.

The last, fourth condition checked by the routine is:

dk = 0, if xk is basic or free non-basic variable
0 ≤ dk < +∞ if xk is non-basic on its lower (minimization)

or upper (maximization) bound
−∞ < dk ≤ 0 if xk is non-basic on its upper (minimization)

or lower (maximization) bound
−∞ < dk < +∞ if xk is non-basic fixed variable

(KKT.DB)

for all k = 1, . . . , m + n, where dk is a reduced cost (Lagrange multiplier) of auxiliary
(1 ≤ k ≤ m) or structural (m + 1 ≤ k ≤ m + n) variable xk. Geometrically this condition
expresses the requirement that constraints of the original problem must ”hold” the point
preventing its movement along the anti-gradient (in case of minimization) or the gradient
(in case of maximization) of the objective function. Since in case of basic solution re-
duced costs of all basic variables are placed on their (zero) bounds, actually the condition
(KKT.DB) needs to be checked for non-basic variables only. If the dual basic solution has
sufficient accuracy, this condition shows dual feasibility of the solution.

Should note that the complete set of Karush-Kuhn-Tucker optimality conditions also
includes the fifth, so called complementary slackness condition, which expresses the re-
quirement that at least either a primal variable xk or its dual counterpart dk must be on
its bound for all k = 1, . . . , m + n. However, being always satisfied by definition for any
basic solution that condition is not checked by the routine.

To check the first condition (KKT.PE) the routine computes a vector of residuals:

g = xR − AxS ,

determines component of this vector that correspond to largest absolute and relative errors:

pe_ae_max = max
1≤i≤m

|gi|,

pe_re_max = max
1≤i≤m

|gi|

1 + |(xR)i|
,

and stores these quantities and corresponding row indices to the structure LPXKKT.
To check the second condition (KKT.PB) the routine computes a vector of residuals:

hk =











0, if lk ≤ xk ≤ uk

xk − lk, if xk < lk
xk − uk, if xk > uk

for all k = 1, . . . , m + n, determines components of this vector that correspond to largest
absolute and relative errors:

pb_ae_max = max
1≤k≤m+n

|hk|,

pb_re_max = max
1≤k≤m+n

|hk|

1 + |xk|
,

and stores these quantities and corresponding variable indices to the structure LPXKKT.

39

To check the third condition (KKT.DE) the routine computes a vector of residuals:

u = AT (dR − cR) + (dS − cS),

determines components of this vector that correspond to largest absolute and relative
errors:

de_ae_max = max
1≤j≤n

|uj |,

de_re_max = max
1≤j≤n

|uj |

1 + |(dS)j − (cS)j |
,

and stores these quantities and corresponding column indices to the structure LPXKKT.
To check the fourth condition (KKT.DB) the routine computes a vector of residuals:

vk =

{

0, if dk has correct sign
dk, if dk has wrong sign

for all k = 1, . . . , m + n, determines components of this vector that correspond to largest
absolute and relative errors:

db_ae_max = max
1≤k≤m+n

|vk|,

db_re_max = max
1≤k≤m+n

|vk|

1 + |dk − ck|
,

and stores these quantities and corresponding variable indices to the structure LPXKKT.
Using the relative errors for all the four conditions the routine lpx_check_kkt also

estimates a ”quality” of the basic solution from the standpoint of these conditions and
stores corresponding quality indicators to the structure LPXKKT:

pe_quality — quality of primal solution;
pb_quality — quality of primal feasibility;
de_quality — quality of dual solution;
db_quality — quality of dual feasibility.
Each of these indicators is assigned to one of the following four values:
’H’ means high quality,
’M’ means medium quality,
’L’ means low quality, or
’?’ means wrong or infeasible solution.
If all the indicators show high or medium quality (for an internally scaled LP problem,

i.e. when the parameter scaled in a call to the routine lpx_check_kkt is non-zero), the
user can be sure that the obtained basic solution is quite accurate.

If some of the indicators show low quality, the solution can still be considered as
relevant, though an additional analysis is needed depending on which indicator shows low
quality.

If the indicator pe_quality is assigned to ’?’, the primal solution is wrong. If the
indicator de_quality is assigned to ’?’, the dual solution is wrong.

If the indicator db_quality is assigned to ’?’ while other indicators show a good
quality, this means that the current basic solution being primal feasible is not dual feasible.
Similarly, if the indicator pb_quality is assigned to ’?’ while other indicators are not,
this means that the current basic solution being dual feasible is not primal feasible.

40

2.8 LP basis and simplex table routines

2.8.1 lpx warm up — “warm up” LP basis

Synopsis

#include "glpk.h"

int lpx_warm_up(LPX *lp);

Description The routine lpx_warm_up “warms up” the LP basis for the specified prob-
lem object using current statuses assigned to rows and columns (i.e. to auxiliary and
structural variables).

“Warming up” includes reinverting (factorizing) the basis matrix (if neccesary), com-
puting primal and dual components as well as determining primal and dual statuses of
the basic solution.

Returns The routine lpx_warm_up returns one of the following exit codes:
LPX_E_OK the LP basis has been successfully “warmed up”.
LPX_E_EMPTY the problem has no rows and/or no columns.
LPX_E_BADB the LP basis is invalid, because the number of basic variables is not

the same as the number of rows.
LPX_E_SING the basis matrix is numerically singular or ill-conditioned.

2.8.2 lpx eval tab row — compute row of the simplex table

Synopsis

#include "glpk.h"

int lpx_eval_tab_row(LPX *lp, int k, int ind[], double val[]);

Description The routine lpx_eval_tab_row computes a row of the current simplex
table for the basic variable, which is specified by the number k: if 1 ≤ k ≤ m, xk is k-th
auxiliary variable; if m + 1 ≤ k ≤ m + n, xk is (k − m)-th structural variable, where m is
the number of rows, n is the number of columns. The current basis must be available.

The routine stores column indices and numerical values of non-zero elements of the
computed row in sparse format to locations ind[1], . . . , ind[len] and val[1], . . . ,
val[len], respectively, where 0 ≤ len ≤ n is the number of non-zeros returned on exit.

Element indices stored in the array ind have the same sense as the index k, i.e. indices
1 to m denote auxiliary variables and indices m + 1 to m + n denote structural ones (all
these variables are non-basic by definition).

The computed row shows how the specified basic variable xk = (xB)i depends on
non-basic variables:

(xB)i = αi1(xN)1 + αi2(xN)2 + . . . + αin(xN)n,

where αij are elements of the simplex table row, (xN)j are non-basic (auxiliary and struc-
tural) variables.

41

Returns The routine lpx_eval_tab_row returns the number of non-zero elements in
the simplex table row stored in the arrays ind and val.

2.8.3 lpx eval tab col — compute column of the simplex table

Synopsis

#include "glpk.h"

int lpx_eval_tab_col(LPX *lp, int k, int ind[], double val[]);

Description The routine lpx_eval_tab_col computes a column of the current simplex
table for the non-basic variable, which is specified by the number k: if 1 ≤ k ≤ m, xk is
k-th auxiliary variable; if m + 1 ≤ k ≤ m + n, xk is (k − m)-th structural variable, where
m is the number of rows, n is the number of columns. The current basis must be valid.

The routine stores row indices and numerical values of non-zero elements of the com-
puted column in sparse format to locations ind[1], . . . , ind[len] and val[1], . . . ,
val[len], respectively, where 0 ≤ len ≤ m is the number of non-zeros returned on
exit.

Element indices stored in the array ind have the same sense as the index k, i.e. indices
1 to m denote auxiliary variables and indices m + 1 to m + n denote structural ones (all
these variables are basic by definition).

The computed column shows how the basic variables depend on the specified non-basic
variable xk = (xN)j :

(xB)1 = . . . + α1j(xN)j + . . .
(xB)2 = . . . + α2j(xN)j + . . .

.
(xB)m = . . . + αmj(xN)j + . . .

where αij are elements of the simplex table column, (xB)i are basic (auxiliary and struc-
tural) variables.

Returns The routine lpx_eval_tab_col returns the number of non-zero elements in
the simplex table column stored in the arrays ndx and val.

2.8.4 lpx transform row — transform explicitly specified row

Synopsis

#include "glpk.h"

int lpx_transform_row(LPX *lp, int len, int ind[], double val[]);

Description The routine lpx_transform_row performs the same operation as the rou-
tine lpx_eval_tab_row, except that the transformed row is specified explicitly.

The explicitly specified row may be thought as a linear form:

x = a1xm+1 + a2xm+2 + . . . + anxm+n, (1)

where x is an auxiliary variable for this row, aj are coefficients of the linear form, xm+j

are structural variables.

42

On entry column indices and numerical values of non-zero coefficients aj of the
transformed row should be placed in locations ind[1], . . . , ind[len] and val[1], . . . ,
val[len], where len is number of non-zero coefficients.

This routine uses the system of equality constraints and the current basis in order
to express the auxiliary variable x in (1) through the current non-basic variables (as if
the transformed row were added to the problem object and the auxiliary variable x were
basic), i.e. the resultant row has the form:

x = α1(xN)1 + α2(xN)2 + . . . + αn(xN)n, (2)

where αj are influence coefficients, (xN)j are non-basic (auxiliary and structural) variables,
n is number of columns in the specified problem object.

On exit the routine stores indices and numerical values of non-zero coefficients αj of
the resultant row (2) in locations ind[1], . . . , ind[len’] and val[1], . . . , val[len’],
where 0 ≤ len′ ≤ n is the number of non-zero coefficients in the resultant row returned by
the routine. Note that indices of non-basic variables stored in the array ind correspond to
original ordinal numbers of variables: indices 1 to m mean auxiliary variables and indices
m + 1 to m + n mean structural ones.

Returns The routine lpx_transform_row returns len’, the number of non-zero coeffi-
cients in the resultant row stored in the arrays ind and val.

2.8.5 lpx transform col — transform explicitly specified column

Synopsis

#include "glpk.h"

int lpx_transform_col(LPX *lp, int len, int ind[], double val[]);

Description The routine lpx_transform_col performs the same operation as the rou-
tine lpx_eval_tab_col, except that the transformed column is specified explicitly.

The explicitly specified column may be thought as it were added to the original system
of equality constraints:

x1 = a11xm+1 + . . . + a1nxm+n + a1x
x2 = a21xm+1 + . . . + a2nxm+n + a2x

.
xm = am1xm+1 + . . . + amnxm+n + amx

(1)

where xi are auxiliary variables, xm+j are structural variables (presented in the problem
object), x is a structural variable for the explicitly specified column, ai are constraint
coefficients for x.

On entry row indices and numerical values of non-zero coefficients ai of the transformed
column should be placed in locations ind[1], . . . , ind[len] and val[1], . . . , val[len],
where len is number of non-zero coefficients.

This routine uses the system of equality constraints and the current basis in order
to express the current basic variables through the structural variable x in (1) (as if the

43

transformed column were added to the problem object and the variable x were non-basic):

(xB)1 = . . . + α1x
(xB)2 = . . . + α2x

.
(xB)m = . . . + αmx

(2)

where αi are influence coefficients, xB are basic (auxiliary and structural) variables, m is
number of rows in the specified problem object.

On exit the routine stores indices and numerical values of non-zero coefficients αi of
the resultant column (2) in locations ind[1], . . . , ind[len’] and val[1], . . . , val[len’],
where 0 ≤ len′ ≤ m is the number of non-zero coefficients in the resultant column returned
by the routine. Note that indices of basic variables stored in the array ind correspond to
original ordinal numbers of variables, i.e. indices 1 to m mean auxiliary variables, indices
m + 1 to m + n mean structural ones.

Returns The routine lpx_transform_col returns len’, the number of non-zero coeffi-
cients in the resultant column stored in the arrays ind and val.

2.8.6 lpx prim ratio test — perform primal ratio test

Synopsis

#include "glpk.h"

int lpx_prim_ratio_test(LPX *lp, int len, int ind[], double val[],

int how, double tol);

Description The routine lpx_prim_ratio_test performs the primal ratio test for an
explicitly specified column of the simplex table.

The primal basic solution associated with an LP problem object, which the parameter
lp points to, should be feasible. No components of the LP problem object are changed by
the routine.

The explicitly specified column of the simplex table shows how the basic variables xB

depend on some non-basic variable y (which is not necessarily presented in the problem
object):

(xB)1 = . . . + α1y
(xB)2 = . . . + α2y

.
(xB)m = . . . + αmy

(1)

The column (1) is specifed on entry to the routine using the sparse format. Ordinal
numbers of basic variables (xB)i should be placed in locations ind[1], . . . , ind[len],
where ordinal number 1 to m denote auxiliary variables, and ordinal numbers m + 1 to
m + n denote structural variables. The corresponding non-zero coefficients αi should be
placed in locations val[1], . . . , val[len]. The arrays ind and val are not changed by
the routine.

The parameter how specifies in which direction the variable y changes on entering the
basis: +1 means increasing, −1 means decreasing.

44

The parameter tol is a relative tolerance (small positive number) used by the routine
to skip small αi in the column (1).

The routine determines the ordinal number of some basic variable (among specified in
ind[1], . . . , ind[len]), which reaches its (lower or upper) bound first before any other
basic variables do and which therefore should leave the basis instead the variable y in
order to keep primal feasibility, and returns it on exit. If the choice cannot be made (i.e.
if the adjacent basic solution is primal unbounded due to y), the routine returns zero.

Note If the non-basic variable y is presented in the LP problem object, the column (1)
can be computed using the routine lpx_eval_tab_col. Otherwise it can be computed
using the routine lpx_transform_col.

Returns The routine lpx_prim_ratio_test returns the ordinal number of some basic
variable (xB)i, which should leave the basis instead the variable y in order to keep primal
feasibility. If the adjacent basic solution is primal unbounded and therefore the choice
cannot be made, the routine returns zero.

2.8.7 lpx dual ratio test — perform dual ratio test

Synopsis

#include "glpk.h"

int lpx_dual_ratio_test(LPX *lp, int len, int ind[], double val[],

int how, double tol);

Description The routine lpx_dual_ratio_test performs the dual ratio test for an
explicitly specified row of the simplex table.

The dual basic solution associated with an LP problem object, which the parameter
lp points to, should be feasible. No components of the LP problem object are changed by
the routine.

The explicitly specified row of the simplex table is a linear form, which shows how some
basic variable y (not necessarily presented in the problem object) depends on non-basic
variables xN :

y = α1(xN)1 + α2(xN)2 + . . . + αn(xN)n. (1)

The linear form (1) is specified on entry to the routine using the sparse format. Ordinal
numbers of non-basic variables (xN)j should be placed in locations ind[1], . . . , ind[len],
where ordinal numbers 1 to m denote auxiliary variables, and ordinal numbers m + 1 to
m + n denote structural variables. The corresponding non-zero coefficients αj should be
placed in locations val[1], . . . , val[len]. The arrays ind and val are not changed by
the routine.

The parameter how specifies in which direction the variable y changes on leaving the
basis: +1 means increasing, −1 means decreasing.

The parameter tol is a relative tolerance (small positive number) used by the routine
to skip small αj in the form (1).

The routine determines the ordinal number of some non-basic variable (among specified
in ind[1], . . . , ind[len]), whose reduced cost reaches its (zero) bound first before this
happens for any other non-basic variables and which therefore should enter the basis

45

instead the variable y in order to keep dual feasibility, and returns it on exit. If the choice
cannot be made (i.e. if the adjacent basic solution is dual unbounded due to y), the routine
returns zero.

Note If the basic variable y is presented in the LP problem object, the row (1) can be
computed using the routine lpx_eval_tab_row. Otherwise it can be computed using the
routine lpx_transform_row.

Returns The routine lpx_dual_ratio_test returns the ordinal number of some non-
basic variable (xN)j , which should enter the basis instead the variable y in order to keep
dual feasibility. If the adjacent basic solution is dual unbounded and therefore the choice
cannot be made, the routine returns zero.

46

2.9 Interior-point method routines

2.9.1 lpx interior — solve LP problem using the primal-dual interior-
point method

Synopsis

#include "glpk.h"

int lpx_interior(LPX *lp);

Description The routine lpx_interior is an interface to the LP problem solver based
on the primal-dual interior-point method.

This routine obtains problem data from the problem object, which the parameter lp

points to, calls the solver to solve the LP problem, and stores the found solution back in
the problem object.

Interior-point methods (also known as barrier methods) are more modern and more
powerful numerical methods for large-scale linear programming. They especially fit for
very sparse LP problems and allow solving such problems much faster than the simplex
method.

Solving large LP problems may take a long time, so the routine lpx_interior displays
information about every interior point iteration1. This information is sent to the standard
output and has the following format:

nnn: F = fff; rpi = ppp; rdi = ddd; gap = ggg

where nnn is iteration number, fff is the current value of the objective function (in the
case of maximization it has wrong sign), ppp is the current relative primal infeasibility,
ddd is the current relative dual infeasibility, and ggg is the current primal-dual gap.

Should note that currently the GLPK interior-point solver does not include many
important features, in particular:

it is not able to process dense columns. Thus, if the constraint matrix of the LP
problem has dense columns, the solving process will be inefficient;

it has no features against numerical instability. For some LP problems premature
termination may happen if the matrix ADAT becomes singular or ill-conditioned;

it is not able to identify the optimal basis, which corresponds to the found interior-
point solution.

Returns The routine lpx_interior returns one of the following exit codes:
LPX_E_OK the LP problem has been successfully solved (to optimality).
LPX_E_FAULT the solver can’t start the search because either the problem has no

rows and/or no columns, or some row has non-zero objective coeffi-
cient.

LPX_E_NOFEAS the problem has no feasible (primal or dual) solution.

1Unlike the simplex method the interior point method usually needs 30—50 iterations (independently
on the problem size) in order to find an optimal solution.

47

LPX_E_NOCONV the search was prematurely terminated due to very slow convergence
or divergence.

LPX_E_ITLIM the search was prematurely terminated because the simplex itera-
tions limit has been exceeded.

LPX_E_INSTAB the search was prematurely terminated due to numerical instability
on solving Newtonian system.

2.9.2 lpx ipt status — retrieve status of interior-point solution

Synopsis

#include "glpk.h"

int lpx_ipt_status(LPX *lp);

Returns The routine lpx_ipt_status reports the status of a solution found by the
interior-point solver as follows:

LPX_T_UNDEF interior-point solution is undefined.
LPX_T_OPT interior-point solution is optimal.

2.9.3 lpx ipt obj val — retrieve objective value

Synopsis

#include "glpk.h"

double lpx_ipt_obj_val(LPX *lp);

Returns The routine lpx_ipt_obj_val returns value of the objective function for
interior-point solution.

2.9.4 lpx ipt row prim — retrieve row primal value

Synopsis

#include "glpk.h"

double lpx_ipt_row_prim(LPX *lp, int i);

Returns The routine lpx_ipt_row_prim returns primal value of the auxiliary variable
associated with i-th row.

2.9.5 lpx ipt row dual — retrieve row dual value

Synopsis

#include "glpk.h"

double lpx_ipt_row_dual(LPX *lp, int i);

48

Returns The routine lpx_ipt_row_dual returns dual value (i.e. reduced cost) of the
auxiliary variable associated with i-th row.

2.9.6 lpx ipt col prim — retrieve column primal value

Synopsis

#include "glpk.h"

double lpx_ipt_col_prim(LPX *lp, int j);

Returns The routine lpx_ipt_col_prim returns primal value of the structural variable
associated with j-th column.

2.9.7 lpx ipt col dual — retrieve column dual value

Synopsis

#include "glpk.h"

double lpx_ipt_col_dual(LPX *lp, int j);

Returns The routine lpx_ipt_col_dual returns dual value (i.e. reduced cost) of the
structural variable associated with j-th column.

49

2.10 MIP routines

2.10.1 lpx set class — set (change) problem class

Synopsis

#include "glpk.h"

void lpx_set_class(LPX *lp, int klass);

Description The routine lpx_set_class sets (changes) the class of the problem object
as specified by the parameter klass:

LPX_LP pure linear programming (LP) problem;
LPX_MIP mixed integer programming (MIP) problem.

2.10.2 lpx get class — retrieve problem class

Synopsis

#include "glpk.h"

int lpx_get_class(LPX *lp);

Returns The routine lpx_get_class returns the class of the specified problem object:
LPX_LP pure linear programming (LP) problem;
LPX_MIP mixed integer programming (MIP) problem.

2.10.3 lpx set col kind — set (change) column kind

Synopsis

#include "glpk.h"

void lpx_set_col_kind(LPX *lp, int j, int kind);

Description The routine lpx_set_col_kind sets (changes) the kind of j-th column
(structural variable) as specified by the parameter kind:

LPX_CV continuous variable;
LPX_IV integer variable.

2.10.4 lpx get col kind — retrieve column kind

Synopsis

#include "glpk.h"

int lpx_get_col_kind(LPX *lp, int j);

50

Returns The routine lpx_get_col_kind returns the kind of j-th column (structural
variable) as follows:

LPX_CV continuous variable;
LPX_IV integer variable.

2.10.5 lpx get num int — retrieve number of integer columns

Synopsis

#include "glpk.h"

int lpx_get_num_int(LPX *lp);

Returns The routine lpx_get_num_int returns the number of columns (structural vari-
ables), which are marked as integer.

2.10.6 lpx get num bin — retrieve number of binary columns

Synopsis

#include "glpk.h"

int lpx_get_num_bin(LPX *lp);

Returns The routine lpx_get_num_bin returns the number of columns (structural vari-
ables), which are marked as integer and whose lower bound is zero and upper bound is
one.

2.10.7 lpx integer — solve MIP problem using the branch-and-bound
method

Synopsis

#include "glpk.h"

int lpx_integer(LPX *lp);

Description The routine lpx_integer is an interface to the MIP problem solver based
on the branch-and-bound method.

This routine obtains problem data from the problem object, which the parameter lp

points to, calls the solver to solve the MIP problem, and stores an obtained solution and
other relevant information back in the problem object.

On entry to this routine the problem object must contain an optimal basic solution
for LP relaxation, which can be obtained by means of the simplex-based solver (see the
routine lpx_simplex).

Solving many MIP problems may take a long time, so the solver reports some informa-
tion about best known solution, which is sent to the standard output. This information
has the following format:

+nnn: mip = xxx <rho> yyy gap (ppp; qqq)

51

where ‘nnn’ is the simplex iteration number; ‘xxx’ is a value of the objective function for
the best known integer feasible solution (if no integer feasible solution has been found yet,
‘xxx’ is the text ‘not found yet’); ‘rho’ is the string ‘>=’ (in case of minimization) or
‘<=’ (in case of maximization); ‘yyy’ is a global bound for exact integer optimum (i.e. the
exact integer optimum is always in the range from ‘xxx’ to ‘yyy’); ‘gap’ is the relative
mip gap, in percents, computed as gap = |xxx − yyy|/(|xxx| + DBL EPSILON) · 100%
(if gap is greater than 999.9%, it is not printed); ‘ppp’ is the number of subproblems in
the active list, ‘qqq’ is the number of subproblems which have been already fathomed and
therefore removed from the branch-and-bound search tree.

Note that the branch-and-bound solver implemented in GLPK uses easy heuristics for
branching and backtracking, and therefore it is not perfect. Most probably this solver can
be used for solving MIP problems with one or two hundreds of integer variables. Hard or
very large scale MIP problems cannot be solved by this routine.

Returns The routine lpx_integer returns one of the following exit codes:

LPX_E_OK the MIP problem has been successfully solved. (Note that, for ex-
ample, if the problem has no integer feasible solution, this exit code
is reported.)

LPX_E_FAULT unable to start the search because either:
the problem is not of MIP class, or
the problem object doesn’t contain optimal solution for LP relax-
ation, or
some integer variable has non-integer lower or upper bound, or
some row has non-zero objective coefficient.

LPX_E_ITLIM the search was prematurely terminated because the simplex itera-
tions limit has been exceeded.

LPX_E_TMLIM the search was prematurely terminated because the time limit has
been exceeded.

LPX_E_SING the search was prematurely terminated due to the solver failure (the
current basis matrix got singular or ill-conditioned).

2.10.8 lpx mip status — retrieve status of MIP solution

Synopsis

#include "glpk.h"

int lpx_mip_status(LPX *lp);

Returns The routine lpx_mip_status reports the status of a MIP solution found by
the branch-and-bound solver as follows:

LPX_I_UNDEF MIP solution is undefined.
LPX_I_OPT MIP solution is integer optimal.
LPX_I_FEAS MIP solution is integer feasible, however its optimality has not been

proven, perhaps due to premature termination of the search.
LPX_I_NOFEAS problem has no integer feasible solution (proven by the solver).

52

2.10.9 lpx mip obj val — retrieve objective value

Synopsis

#include "glpk.h"

double lpx_mip_obj_val(LPX *lp);

Returns The routine lpx_mip_obj_val returns value of the objective function for MIP
solution.

2.10.10 lpx mip row val — retrieve row value

Synopsis

#include "glpk.h"

double lpx_mip_row_val(LPX *lp, int i);

Returns The routine lpx_mip_row_val returns value of the auxiliary variable associ-
ated with i-th row.

2.10.11 lpx mip col val — retrieve column value

Synopsis

#include "glpk.h"

double lpx_mip_col_val(LPX *lp, int j);

Returns The routine lpx_mip_col_val returns value of the structural variable associ-
ated with j-th column.

53

2.11 Control parameters and statistics routines

2.11.1 lpx reset parms — reset control parameters to default values

Synopsis

#include "glpk.h"

void lpx_reset_parms(LPX *lp);

Description The routine lpx_reset_parms resets all control parameters associated
with a problem object, which the parameter lp points to, to their default values.

2.11.2 lpx set int parm — set (change) integer control parameter

Synopsis

#include "glpk.h"

void lpx_set_int_parm(LPX *lp, int parm, int val);

Description The routine lpx_set_int_parm sets (changes) the current value of an in-
teger control parameter parm. The parameter val specifies a new value of the control
parameter.

2.11.3 lpx get int parm — query integer control parameter

Synopsis

#include "glpk.h"

int lpx_get_int_parm(LPX *lp, int parm);

Returns The routine lpx_get_int_parm returns the current value of an integer control
parameter parm.

2.11.4 lpx set real parm — set (change) real control parameter

Synopsis

#include "glpk.h"

void lpx_set_real_parm(LPX *lp, int parm, double val);

Description The routine lpx_set_real_parm sets (changes) the current value of a real
(floating point) control parameter parm. The parameter val specifies a new value of the
control parameter.

54

2.11.5 lpx get real parm — query real control parameter

Synopsis

#include "glpk.h"

double lpx_get_real_parm(LPX *lp, int parm);

Returns The routine lpx_get_real_parm returns the current value of a real (floating
point) control parameter parm.

2.11.6 Parameter list

This subsection describes all control parameters currently implemented in the package.
Symbolic names of control parameters (which are macros defined in the header file glpk.h)
are given on the left. Types, default values, and descriptions are given on the right.

LPX_K_MSGLEV type: integer, default: 3
Level of messages output by solver routines:
0 — no output
1 — error messages only
2 — normal output
3 — full output (includes informational messages)

LPX_K_SCALE type: integer, default: 1
Scaling option:
0 — no scaling
1 — equilibration scaling
2 — geometric mean scaling
3 — geometric mean scaling, then equilibration scaling

LPX_K_DUAL type: integer, default: 0
Dual simplex option:
0 — do not use the dual simplex
1 — if initial basic solution is dual feasible, use the dual simplex

LPX_K_PRICE type: integer, default: 1
Pricing option (for both primal and dual simplex):
0 — textbook pricing
1 — steepest edge pricing

LPX_K_RELAX type: real, default: 0.07
Relaxation parameter used in the ratio test. If it is zero, the textbook
ratio test is used. If it is non-zero (should be positive), Harris’ two-
pass ratio test is used. In the latter case on the first pass of the ratio
test basic variables (in the case of primal simplex) or reduced costs of
non-basic variables (in the case of dual simplex) are allowed to slightly
violate their bounds, but not more than (RELAX · TOLBND) or (RELAX ·
TOLDJ) (thus, RELAX is a percentage of TOLBND or TOLDJ).

LPX_K_TOLBND type: real, default: 10−7

Relative tolerance used to check if the current basic solution is primal
feasible. (Do not change this parameter without detailed understand-
ing its purpose.)

55

LPX_K_TOLDJ type: real, default: 10−7

Absolute tolerance used to check if the current basic solution is dual
feasible. (Do not change this parameter without detailed understand-
ing its purpose.)

LPX_K_TOLPIV type: real, default: 10−9

Relative tolerance used to choose eligible pivotal elements of the sim-
plex table. (Do not change this parameter without detailed under-
standing its purpose.)

LPX_K_ROUND type: integer, default: 0
Solution rounding option:
0 — report all primal and dual values “as is”
1 — replace tiny primal and dual values by exact zero

LPX_K_OBJLL type: real, default: -DBL_MAX
Lower limit of the objective function. If on the phase II the objective
function reaches this limit and continues decreasing, the solver stops
the search. (Used in the dual simplex only.)

LPX_K_OBJUL type: real, default: +DBL_MAX
Upper limit of the objective function. If on the phase II the objective
function reaches this limit and continues increasing, the solver stops
the search. (Used in the dual simplex only.)

LPX_K_ITLIM type: integer, default: −1
Simplex iterations limit. If this value is positive, it is decreased by
one each time when one simplex iteration has been performed, and
reaching zero value signals the solver to stop the search. Negative
value means no iterations limit.

LPX_K_ITCNT type: integer, initial: 0
Simplex iterations count. This count is increased by one each time
when one simplex iteration has been performed.

LPX_K_TMLIM type: real, default: −1.0
Searching time limit, in seconds. If this value is positive, it is de-
creased each time when one simplex iteration has been performed by
the amount of time spent for the iteration, and reaching zero value
signals the solver to stop the search. Negative value means no time
limit.

LPX_K_OUTFRQ type: integer, default: 200
Output frequency, in iterations. This parameter specifies how fre-
quently the solver sends information about the solution to the standard
output.

LPX_K_OUTDLY type: real, default: 0.0
Output delay, in seconds. This parameter specifies how long the solver
should delay sending information about the solution to the standard
output. Non-positive value means no delay.

LPX_K_BRANCH type: integer, default: 2
Branching heuristic option (for MIP only):
0 — branch on the first variable
1 — branch on the last variable
2 — branch using a heuristic by Driebeck and Tomlin

56

LPX_K_BTRACK type: integer, default: 2
Backtracking heuristic option (for MIP only):
0 — depth first search
1 — breadth first search
2 — backtrack using the best projection heuristic

LPX_K_TOLINT type: real, default: 10−5

Absolute tolerance used to check if the current basic solution is integer
feasible. (Do not change this parameter without detailed understand-
ing its purpose.)

LPX_K_TOLOBJ type: real, default: 10−7

Relative tolerance used to check if the value of the objective function
is not better than in the best known integer feasible solution. (Do not
change this parameter without detailed understanding its purpose.)

LPX_K_MPSINFO type: int, default: 1
If this flag is set, the routine lpx_write_mps writes several comment
cards, which contains some information about the problem. Otherwise
the routine writes no comment cards. This flag also affects the routine
lpx_write_bas.

LPX_K_MPSOBJ type: int, default: 2
This parameter tells the routine lpx_write_mps how to output the
objective function row:
0 — never output objective function row
1 — always output objective function row
2 — output objective function row if the problem has no free rows

LPX_K_MPSORIG type: int, default: 0
If this flag is set, the routine lpx_write_mps uses the original symbolic
names of rows and columns. Otherwise the routine generates plain
names using ordinal numbers of rows and columns. This flag also
affects the routines lpx_read_bas and lpx_write_bas.

LPX_K_MPSWIDE type: int, default: 1
If this flag is set, the routine lpx_write_mps uses all data fields. Oth-
erwise the routine keeps fields 5 and 6 empty.

LPX_K_MPSFREE type: int, default: 0
If this flag is set, the routine lpx_write_mps omits column and vector
names every time when possible (free style). Otherwise the routine
never omits these names (pedantic style).

LPX_K_MPSSKIP type: int, default: 0
If this flag is set, the routine lpx_write_mps skips empty columns (i.e.
which has no constraint coefficients). Otherwise the routine outputs
all columns.

LPX_K_PRESOL type: int, default: 0
If this flag is set, the routine lpx_simplex solves the problem using
the built-in LP presolver. Otherwise the LP presolver is not used.

57

2.12 Utility routines

2.12.1 lpx read mps — read problem data in fixed MPS format

Synopsis

#include "glpk.h"

LPX *lpx_read_mps(char *fname);

Description The routine lpx_read_mps reads LP/MIP problem data in fixed MPS
format from an input text file whose name is the character string fname. (The MPS
format is described in Appendix B, page 66.)

Behavior of the routine lpx_read_mps depends on some control parameters (see Sub-
section 2.11.6, page 54.)

Returns If no error occurred, the routine returns a pointer to the created problem
object. Otherwise the routine returns NULL.

2.12.2 lpx write mps — write problem data in fixed MPS format

Synopsis

#include "glpk.h"

int lpx_write_mps(LPX *lp, char *fname);

Description The routine lpx_write_mps writes problem data in fixed MPS format
to an output text file whose name is the character string fname. (The MPS format is
described in Appendix B, page 66.)

Behavior of the routine lpx_write_mps depends on some control parameters (see Sub-
section 2.11.6, page 54.)

Returns If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.

2.12.3 lpx read bas — read LP basis in fixed MPS format

Synopsis

#include "glpk.h"

int lpx_read_bas(LPX *lp, char *fname);

Description The routine lpx_read_bas reads LP basis in fixed MPS format from an
input text file whose name is the character string fname. (About this feature of the MPS
format see Section B.13, page 75.)

Behavior of the routine lpx_read_bas depends on some control parameters (see Sub-
section 2.11.6, page 54.)

58

Returns If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.

2.12.4 lpx write bas — write LP basis in fixed MPS format

Synopsis

#include "glpk.h"

int lpx_write_bas(LPX *lp, char *fname);

Description The routine lpx_write_bas writes current LP basis in fixed MPS format
to an output text file whose name is the character string fname. (About this feature of
the MPS format see Section B.13, page 75.)

Behavior of the routine lpx_write_bas depends on some control parameters (see Sub-
section 2.11.6, page 54.)

Returns If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.

2.12.5 lpx read freemps — read problem data in free MPS format

Synopsis

#include "glpk.h"

LPX *lpx_read_freemps(char *fname);

Description The routine lpx_read_freemps reads LP/MIP problem data in free MPS
format from an input text file whose name is the character string fname. (The MPS format
is described in Appendix B, page 66.)

Behavior of the routine lpx_read_freemps depends on some control parameters (see
Subsection 2.11.6, page 54.)

Returns If no error occurred, the routine returns a pointer to the created problem
object. Otherwise the routine returns NULL.

2.12.6 lpx write freemps — write problem data in free MPS format

Synopsis

#include "glpk.h"

int lpx_write_freemps(LPX *lp, char *fname);

Description The routine lpx_write_freemps writes problem data in fixed MPS format
to an output text file whose name is the character string fname. (The MPS format is
described in Appendix B, page 66.)

Behavior of the routine lpx_write_freemps depends on some control parameters (see
Subsection 2.11.6, page 54.)

59

Returns If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.

2.12.7 lpx read cpxlp — read problem data in CPLEX LP format

Synopsis

#include "glpk.h"

LPX *lpx_read_cpxlp(char *fname);

Description The routine lpx_read_cpxlp reads LP/MIP problem data in CPLEX LP
format from an input text file whose name is the character string fname. (The CPLEX
LP format is described in Appendix C, page 77.)

Returns Behavior of the routine lpx_read_cpxlp depends on some control parameters
(see Subsection 2.11.6, page 54.)

Returns If no error occurred, the routine returns a pointer to the created problem
object. Otherwise the routine returns NULL.

2.12.8 lpx write cpxlp — write problem data in CPLEX LP format

Synopsis

#include "glpk.h"

int lpx_write_cpxlp(LPX *lp, char *fname);

Description The routine lpx_write_cpxlp writes problem data in CPLEX LP format
to an output text file whose name is the character string fname. (The CPLEX LP format
is described in Appendix C, page 77.)

Behavior of the routine lpx_write_cpxlp depends on some control parameters (see
Subsection 2.11.6, page 54.)

Returns If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.

2.12.9 lpx read model — read model written in GNU MathProg model-
ing language

Synopsis

#include "glpk.h"

LPX *lpx_read_model(char *model, char *data, char *output);

60

Description The routine lpx_read_model reads and translates LP/MIP model (prob-
lem) written in the GNU MathProg modeling language.2

The character string model specifies name of input text file, which contains model
section and, optionally, data section. This parameter cannot be NULL.

The character string data specifies name of input text file, which contains data section.
This parameter can be NULL. (If the data file is specified and the model file also contains
data section, that section is ignored and data section from the data file is used.)

The character string output specifies name of output text file, to which the output
produced by display statements is written. If the parameter output is NULL, the display
output is sent to stdout via the routine print.

The routine lpx_read_model is an interface to the model translator, which is a pro-
gram that parses model description and translates it to some internal data structures.

For detailed description of the modeling language see the document “GLPK: Modeling
Language GNU MathProg” included in the GLPK distribution.

Returns If no errors occurred, the routine returns a pointer to the created problem
object. Otherwise the routine sends diagnostics to the standard output and returns NULL.

2.12.10 lpx print prob — write problem data in plain text format

Synopsis

#include "glpk.h"

int lpx_print_prob(LPX *lp, char *fname);

Description The routine lpx_print_prob writes data from a problem object, which
the parameter lp points to, to an output text file, whose name is the character string
fname, in plain text format.

Information reported by the routine lpx_print_prob is intended mainly for visual
analysis.

Returns If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.

2.12.11 lpx print sol — write basic solution in printable format

Synopsis

#include "glpk.h"

int lpx_print_sol(LPX *lp, char *fname);

Description The routine lpx_print_sol writes the current basic solution of an LP
problem, which is specified by the pointer lp, to a text file, whose name is the character
string fname, in printable format.

Information reported by the routine lpx_print_sol is intended mainly for visual
analysis.

2The GNU MathProg modeling language is a subset of the AMPL language.

61

Returns If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.

2.12.12 lpx print sens bnds — write bounds sensitivity information

Synopsis

#include "glpk.h"

int lpx_print_sens_bnds(LPX *lp, char *fname);

Description The routine lpx_print_sens_bnds writes the bounds for objective coeffi-
cients, right-hand-sides of constraints, and variable bounds for which the current optimal
basic solution remains optimal (for LP only).

The LP is given by the pointer lp, and the output is written to the file specified by
fname. The current contents of the file will be overwritten.

Information reported by the routine lpx_print_sens_bnds is intended mainly for
visual analysis.

Returns If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.

2.12.13 lpx print ips — write interior point solution in printable format

Synopsis

#include "glpk.h"

int lpx_print_ips(LPX *lp, char *fname);

Description The routine lpx_print_ips writes the current interior point solution of an
LP problem, which the parameter lp points to, to a text file, whose name is the character
string fname, in printable format.

Information reported by the routine lpx_print_ips is intended mainly for visual
analysis.

Returns If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.

2.12.14 lpx print mip — write MIP solution in printable format

Synopsis

#include "glpk.h"

int lpx_print_mip(LPX *lp, char *fname);

62

Description The routine lpx_print_mip writes a best known integer solution of a MIP
problem, which is specified by the pointer lp, to a text file, whose name is the character
string fname, in printable format.

Information reported by the routine lpx_print_mip is intended mainly for visual
analysis.

Returns If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.

Appendix A

Installing GLPK on Your
Computer

A.1 Obtaining GLPK distribution file

The distrubution file for the most recent version of the GLPK package can be downloaded
from <ftp://ftp.gnu.org/gnu/glpk/> or from some mirror GNU ftp sites; for details
see <http://www.gnu.org/order/ftp.html>.

A.2 Unpacking the distribution file

The GLPK package (like all other GNU software) is distributed in the form of packed
archive. This is one file named glpk-x.y.tar.gz, where x is the major version number
and y is the minor version number.

In order to prepare the distribution for installation you should:
1. Copy the GLPK distribution file to some subdirectory.

2. Enter the command gzip -d glpk-x.y.tar.gz in order to unpack the distribution
file. After unpacking the name of the distribution file will be automatically changed to
glpk-x.y.tar.

3. Enter the command tar -x < glpk-x.y.tar in order to unarchive the distribution.
After this operation the subdirectory glpk-x.y, which is the GLPK distribution, will be
automatically created.

A.3 Configuring the package

After you have unpacked and unarchived GLPK distribution you should configure the
package, i.e. automatically tune it for your computer (platform).

Normally, you should just cd to the subdirectory glpk-x.y and enter the command
./configure. If you are using csh on an old version of System V, you might need to type
sh configure instead to prevent csh from trying execute configure itself.

The configure shell script attempts to guess correct values for various system-
dependent variables used during compilation, and creates Makefile. It also creates a
file config.status that you can run in the future to recreate the current configuration.

Running configure takes about a few minutes. While it is running, it displays some
informational messages that tell you what it is doing. If you don’t want to see these

63

64

messages, run configure with its standard output redirected to dev/null; for example,
./configure >/dev/null.

A.4 Compiling and checking the package

Normally, in order to compile the package you should just enter the command make.
This command reads Makefile generated by configure and automatically performs all
necessary job.

The result of compilation is:

• the file libglpk.a, which is a library archive that contains object code for all GLPK
routines; and

• the program glpsol, which is a stand-alone LP/MIP solver.

If you want, you can override the make variables CFLAGS and LDFLAGS like this:

make CFLAGS=-O2 LDFLAGS=-s

To compile the package in a different directory from the one containing the source
code, you must use a version of make that supports VPATH variable, such as GNU make.
cd to the directory where you want the object files and executables to go and run the
configure script. configure automatically checks for the source code in the directory
that configure is in and in ‘..’. If for some reason configure is not in the source code
directory that you are configuring, then it will report that it can’t find the source code.
In that case, run configure with the option --srcdir=DIR, where DIR is the directory
that contains the source code.

On systems that require unusual options for compilation or linking the package’s
configure script does not know about, you can give configure initial values for vari-
ables by setting them in the environment. In Bourne-compatible shells you can do that
on the command line like this:

CC=’gcc -traditional’ LIBS=-lposix ./configure

Here are the make variables that you might want to override with environment variables
when running configure.

For these variables, any value given in the environment overrides the value that
configure would choose:

• variable CC: C compiler program. The default is cc.

• variable INSTALL: program to use to install files. The default value is install if you
have it, otherwise cp.

For these variables, any value given in the environment is added to the value that
configure chooses:

• variable DEFS: configuration options, in the form ‘-Dfoo -Dbar . . . ’.

• variable LIBS: libraries to link with, in the form ‘-lfoo -lbar . . . ’.

In order to check the package (running some tests included in the distribution) you
can just enter the command make check.

A.5 Installing the package

Normally, in order to install the GLPK package (i.e. copy GLPK library, header files, and
the solver to the system places) you should just enter the command make install (note
that you should be the root user or a superuser).

65

By default, make install will install the package’s files in the subdirectories
usr/local/bin, usr/local/lib, etc. You can specify an installation prefix other than
/usr/local by giving configure the option --prefix=PATH. Alternately, you can do so
by consistently giving a value for the prefix variable when you run make, e.g.

make prefix=/usr/gnu

make prefix=/usr/gnu install

After installing you can remove the program binaries and object files from the source
directory by typing make clean. To remove all files that configure created (Makefile,
config.status, etc.), just type make distclean.

The file configure.in is used to create configure by a program called autoconf.
You only need it if you want to remake configure using a newer version of autoconf.

A.6 Uninstalling the package

In order to uninstall the GLPK package (i.e. delete all GLPK files from the system places)
you can enter the command make uninstall.

Appendix B

MPS Format

B.1 Fixed MPS Format

The MPS format1 is intended for coding LP/MIP problem data. This format assumes the
formulation of LP/MIP problem (1.1)—(1.3) (see Section 1.1, page 7).

MPS file is a text file, which contains two types of cards2: indicator cards and data
cards.

Indicator cards determine a kind of succeeding data. Each indicator card has one word
in uppercase letters beginning in column 1.

Data cards contain problem data. Each data card is divided into six fixed fields:

Field 1 Field 2 Field 3 Field 4 Field 5 Feld 6

Columns 2—3 5—12 15—22 25—36 40—47 50—61
Contents Code Name Name Number Name Number

On a particular data card some fields may be optional.

Names are used to identify rows, columns, and some vectors (see below).

Aligning the indicator code in the field 1 to the left margin is optional.

All names specified in the fields 2, 3, and 5 should contain from 1 up to 8 arbitrary
characters (except control characters). If a name is placed in the field 3 or 5, its first
character should not be the dollar sign ‘$’. If a name contains spaces, the spaces are
ignored.

All numerical values in the fields 4 and 6 should be coded in the form sxxEsyy, where
s is the plus ‘+’ or the minus ‘-’ sign, xx is a real number with optional decimal point, yy
is an integer decimal exponent. Any number should contain up to 12 characters. If the
sign s is omitted, the plus sign is assumed. The exponent part is optional. If a number
contains spaces, the spaces are ignored.

If a card has the asterisk ‘*’ in the column 1, this card is considered as a comment and
ignored. Besides, if the first character in the field 3 or 5 is the dollar sign ‘$’, all characters
from the dollar sign to the end of card are considered as a comment and ignored.

1The MPS format was developed in 1960’s by IBM as input format for their mathematical programming
system MPS/360. Today the MPS format is a most widely used format understood by most mathemat-
ical programming packages. This appendix describes only the features of the MPS format, which are
implemented in the GLPK package.

2In 1960’s MPS file was a deck of 80-column punched cards, so the author decided to keep the word
“card”, which may be understood as “line of text file”.

66

67

MPS file should contain cards in the following order:

• NAME indicator card;

• ROWS indicator card;

• data cards specifying rows (constraints);

• COLUMNS indicator card;

• data cards specifying columns (structural variables) and constraint coefficients;

• RHS indicator card;

• data cards specifying right-hand sides of constraints;

• RANGES indicator card;

• data cards specifying ranges for double-bounded constraints;

• BOUNDS indicator card;

• data cards specifying types and bounds of structural variables;

• ENDATA indicator card.

Section is a group of cards consisting of an indicator card and data cards succeeding
this indicator card. For example, the ROWS section consists of the ROWS indicator card
and data cards specifying rows.

The sections RHS, RANGES, and BOUNDS are optional and may be omitted.

B.2 Free MPS Format

Free MPS format is an improved version of the standard (fixed) MPS format described
above.3 Note that all changes in free MPS format concern only the coding of data while
the structure of data is the same for both fixed and free versions of the MPS format.

In free MPS format indicator and data records4 may have arbitrary length not limited
to 80 characters. Fields of data records have no predefined positions, i.e. the fields may
begin in any position, except position 1, which must be blank, and must be separated from
each other by one or more blanks. However, the fields must appear in the same order as
in fixed MPS format.

Symbolic names in fields 2, 3, and 5 may be longer than 8 characters5 and must not
contain embedded blanks.

Numeric values in fields 4 and 6 are limited to 12 characters and must not contain
embedded blanks.

Only six fields on each data record are used. Any other fields are ignored.

If the first character of any field (not necessarily fields 3 and 5) is the dollar sign ($),
all characters from the dollar sign to the end of record are considered as a comment and
ignored.

B.3 NAME indicator card

The NAME indicator card should be the first card in the MPS file (except optional com-
ment cards, which may precede the NAME card). This card should contain the word NAME

in the columns 1—4 and the problem name in the field 3. The problem name is optional
and may be omitted.

3This format was developed in the beginning of 1990’s by IBM as an alternative to the standard fixed
MPS format for Optimization Subroutine Library (OSL).

4
Record in free MPS format has the same meaning as card in fixed MPS format.

5GLPK allows symbolic names having up to 255 characters.

68

B.4 ROWS section

The ROWS section should start with the indicator card, which contains the word ROWS in
the columns 1—4.

Each data card in the ROWS section specifies one row (constraint) of the problem.
All these data cards have the following format.

‘N’ in the field 1 means that the row is free (unbounded):

−∞ < xi = ai1xm+1 + ai2xm+2 + . . . + ainxm+n < +∞;

‘L’ in the field 1 means that the row is of “less than or equal to” type:

−∞ < xi = ai1xm+1 + ai2xm+2 + . . . + ainxm+n ≤ bi;

‘G’ in the field 1 means that the row is of “greater than or equal to” type:

bi ≤ xi = ai1xm+1 + ai2xm+2 + . . . + ainxm+n < +∞;

‘E’ in the field 1 means that the row is of “equal to” type:

xi = ai1xm+1 + ai2xm+2 + . . . + ainxm+n ≤ bi,

where bi is a right-hand side. Note that each constraint has a corresponding implictly
defined auxiliary variable (xi above), whose value is a value of the corresponding linear
form, therefore row bounds can be considered as bounds of such auxiliary variable.

The filed 2 specifies a row name (which is considered as the name of the corresponding
auxiliary variable).

The fields 3, 4, 5, and 6 are not used and should be empty.

Numerical values of all non-zero right-hand sides bi should be specified in the RHS
section (see below). All double-bounded (ranged) constraints should be specified in the
RANGES section (see below).

B.5 COLUMNS section

The COLUMNS section should start with the indicator card, which contains the word
COLUMNS in the columns 1—7.

Each data card in the COLUMNS section specifies one or two constraint coefficients
aij and also introduces names of columns, i.e. names of structural variables. All these
data cards have the following format.

The field 1 is not used and should be empty.

The field 2 specifies a column name. If this field is empty, the column name from the
immediately preceeding data card is assumed.

The field 3 specifies a row name defined in the ROWS section.

The field 4 specifies a numerical value of the constraint coefficient aij , which is placed
in the corresponding row and column.

The fields 5 and 6 are optional. If they are used, they should contain a second pair
“row name—constraint coefficient” for the same column.

Elements of the constraint matrix (i.e. constraint coefficients) should be enumerated
in the column wise manner: all elements for the current column should be specified before

69

elements for the next column. However, the order of rows in the COLUMNS section may
differ from the order of rows in the ROWS section.

Constraint coefficients not specified in the COLUMNS section are considered as zeros.
Therefore zero coefficients may be omitted, although it is allowed to explicitly specify
them.

B.6 RHS section

The RHS section should start with the indicator card, which contains the word RHS in the
columns 1—3.

Each data card in the RHS section specifies one or two right-hand sides bi (see Section
B.4, page 68). All these data cards have the following format.

The field 1 is not used and should be empty.

The field 2 specifies a name of the right-hand side (RHS) vector6. If this field is empty,
the RHS vector name from the immediately preceeding data card is assumed.

The field 3 specifies a row name defined in the ROWS section.

The field 4 specifies a right-hand side bi for the row, whose name is specified in the
field 3. Depending on the row type bi is a lower bound (for the row of G type), an upper
bound (for the row of L type), or a fixed value (for the row of E type).7

The fields 5 and 6 are optional. If they are used, they should contain a second pair
“row name—right-hand side” for the same RHS vector.

All right-hand sides for the current RHS vector should be specified before right-hand
sides for the next RHS vector. However, the order of rows in the RHS section may differ
from the order of rows in the ROWS section.

Right-hand sides not specified in the RHS section are considered as zeros. Therefore
zero right-hand sides may be omitted, although it is allowed to explicitly specify them.

B.7 RANGES section

The RANGES section should start with the indicator card, which contains the word
RANGES in the columns 1—6.

Each data card in the RANGES section specifies one or two ranges for double-side
constraints, i.e. for constraints that are of the types L and G at the same time:

li ≤ xi = ai1xm+1 + ai2xm+2 + . . . + ainxm+n ≤ ui,

where li is a lower bound, ui is an upper bound. All these data cards have the following
format.

The field 1 is not used and should be empty.

The field 2 specifies a name of the range vector8. If this field is empty, the range vector
name from the immediately preceeding data card is assumed.

The field 3 specifies a row name defined in the ROWS section.

6This feature allows the user to specify several RHS vectors in the same MPS file. However, before
solving the problem a particular RHS vector should be chosen.

7If the row is of N type, bi is considered as a constant term of the corresponding linear form. Should
note, however, this convention is non-standard.

8This feature allows the user to specify several range vectors in the same MPS file. However, before
solving the problem a particular range vector should be chosen.

70

The field 4 specifies a range value ri (see the table below) for the row, whose name is
specified in the field 3.

The fields 5 and 6 are optional. If they are used, they should contain a second pair
“row name—range value” for the same range vector.

All range values for the current range vector should be specified before range values
for the next range vector. However, the order of rows in the RANGES section may differ
from the order of rows in the ROWS section.

For each double-side constraint specified in the RANGES section its lower and upper
bounds are determined as follows:

Row type Sign of ri Lower bound Upper bound

G + or − bi bi + |ri|
L + or − bi − |ri| bi

E + bi bi + |ri|
E − bi − |ri| bi

where bi is a right-hand side specified in the RHS section (if bi is not specified, it is
considered as zero), ri is a range value specified in the RANGES section.

B.8 BOUNDS section

The BOUNDS section should start with the indicator card, which contains the word
BOUNDS in the columns 1—6.

Each data card in the BOUNDS section specifies one (lower or upper) bound for one
structural variable (column). All these data cards have the following format.

The indicator in the field 1 specifies the bound type:
LO lower bound;
UP upper bound;
FX fixed variable (lower and upper bounds are equal);
FR free variable (no bounds);
MI no lower bound (lower bound is “minus infinity”);
PL no upper bound (upper bound is “plus infinity”);

The field 2 specifies a name of the bound vector9. If this field is empty, the bound
vector name from the immediately preceeding data card is assumed.

The field 3 specifies a column name defined in the COLUMNS section.

The field 4 specifies a bound value. If the bound type in the field 1 differs from LO,
UP, and FX, the value in the field 4 is ignored and may be omitted.

The fields 5 and 6 are not used and should be empty.

All bound values for the current bound vector should be specified before bound values
for the next bound vector. However, the order of columns in the BOUNDS section may
differ from the order of columns in the COLUMNS section. Specification of a lower bound
should precede specification of an upper bound for the same column (if both the lower
and upper bounds are explicitly specified).

By default, all columns (structural variables) are non-negative, i.e. have zero lower
bound and no upper bound. Lower (lj) and upper (uj) bounds of some column (structural

9This feature allows the user to specify several bound vectors in the same MPS file. However, before
solving the problem a particular bound vector should be chosen.

71

variable xj) are set in the following way, where sj is a corresponding bound value explicitly
specified in the BOUNDS section:

LO sets lj to sj ;
UP sets uj to sj ;
FX sets both lj and uj to sj ;
FR sets lj to −∞ and uj to +∞;
MI sets lj to −∞;
PL sets uj to +∞.

B.9 ENDATA indicator card

The ENDATA indicator card should be the last card of MPS file (except optional comment
cards, which may follow the ENDATA card). This card should contain the word ENDATA

in the columns 1—6.

B.10 Specifying objective function

It is impossible to explicitly specify the objective function and optimization direction in
the MPS file. However, the following implicit rule is used by default: the first row of N
type is considered as a row of the objective function (i.e. the objective function is the
corresponding auxiliary variable), which should be minimized.

GLPK also allows specifying a constant term of the objective function as a right-hand
side of the corresponding row in the RHS section.

B.11 Example of MPS file

In order to illustrate what the MPS format is, consider the following example of LP
problem:

minimize

value = .03 bin1 + .08 bin2 + .17 bin3 + .12 bin4 + .15 bin5 + .21 alum + .38 silicon

subject to linear constraints

yield = bin1 + bin2 + bin3 + bin4 + bin5 + alum + silicon
fe = .15 bin1 + .04 bin2 + .02 bin3 + .04 bin4 + .02 bin5 + .01 alum + .03 silicon
cu = .03 bin1 + .05 bin2 + .08 bin3 + .02 bin4 + .06 bin5 + .01 alum
mn = .02 bin1 + .04 bin2 + .01 bin3 + .02 bin4 + .02 bin5

mg = .02 bin1 + .03 bin2 + .01 bin5

al = .70 bin1 + .75 bin2 + .80 bin3 + .75 bin4 + .80 bin5 + .97 alum
si = .02 bin1 + .06 bin2 + .08 bin3 + .12 bin4 + .02 bin5 + .01 alum + .97 silicon

72

and bounds of (auxiliary and structural) variables

yield = 2000 0 ≤ bin1 ≤ 200
−∞ < fe ≤ 60 0 ≤ bin2 ≤ 2500
−∞ < cu ≤ 100 400 ≤ bin3 ≤ 800
−∞ < mn ≤ 40 100 ≤ bin4 ≤ 700
−∞ < mg ≤ 30 0 ≤ bin5 ≤ 1500
1500 ≤ al < +∞ 0 ≤ alum < +∞
250 ≤ si ≤ 300 0 ≤ silicon < +∞

A complete MPS file which specifies data for this example is shown below (the first
two comment lines show card positions).

*000000001111111111222222222233333333334444444444555555555566

*234567890123456789012345678901234567890123456789012345678901

NAME PLAN

ROWS

N VALUE

E YIELD

L FE

L CU

L MN

L MG

G AL

L SI

COLUMNS

BIN1 VALUE .03000 YIELD 1.00000

FE .15000 CU .03000

MN .02000 MG .02000

AL .70000 SI .02000

BIN2 VALUE .08000 YIELD 1.00000

FE .04000 CU .05000

MN .04000 MG .03000

AL .75000 SI .06000

BIN3 VALUE .17000 YIELD 1.00000

FE .02000 CU .08000

MN .01000 AL .80000

SI .08000

BIN4 VALUE .12000 YIELD 1.00000

FE .04000 CU .02000

MN .02000 AL .75000

SI .12000

BIN5 VALUE .15000 YIELD 1.00000

FE .02000 CU .06000

MN .02000 MG .01000

AL .80000 SI .02000

ALUM VALUE .21000 YIELD 1.00000

FE .01000 CU .01000

AL .97000 SI .01000

73

SILICON VALUE .38000 YIELD 1.00000

FE .03000 SI .97000

RHS

RHS1 YIELD 2000.00000 FE 60.00000

CU 100.00000 MN 40.00000

SI 300.00000

MG 30.00000 AL 1500.00000

RANGES

RNG1 SI 50.00000

BOUNDS

UP BND1 BIN1 200.00000

UP BIN2 2500.00000

LO BIN3 400.00000

UP BIN3 800.00000

LO BIN4 100.00000

UP BIN4 700.00000

UP BIN5 1500.00000

ENDATA

B.12 MIP features

The MPS format provides two ways for introducing integer variables into the problem.

The first way is most general and based on using special marker cards INTORG and
INTEND. These marker cards are placed in the COLUMNS section. The INTORG card
indicates the start of a group of integer variables (columns), and the card INTEND indi-
cates the end of the group. The MPS file may contain arbitrary number of the marker
cards.

The marker cards have the same format as the data cards (see Section B.1, page 66).

The fields 1, 2, and 6 are not used and should be empty.

The field 2 should contain a marker name. This name may be arbitrary.

The field 3 should contain the word ’MARKER’ (including apostrophes).

The field 5 should contain either the word ’INTORG’ (including apostrophes) for the
marker card, which begins a group of integer columns, or the word ’INTEND’ (including
apostrophes) for the marker card, which ends the group.

The second way is less general but more convenient in some cases. It allows the user
to declare integer columns using two additional types of bounds, which are specified in
the field 1 of data cards in the BOUNDS section (see Section B.8, page 70):

UI upper integer. This bound type specifies that the corresponding column (struc-
tural variable), whose name is specified in the field 3, is of integer kind. In this
case an upper bound of the column should be specified in the field 4 (like in the
case of UP bound type).

BV binary variable. This bound type specifies that the corresponding column (struc-
tural variable), whose name is specified in the field 3, is of integer kind, its lower
bound is zero, and its upper bound is one (thus, such variable being of integer
kind can have only two values zero and one). In this case a numeric value specified
in the field 4 is ignored and may be omitted.

Consider the following example of MIP problem:

74

minimize

Z = 3x1 + 7x2 − x3 + x4

subject to linear constraints

r1 = 2x1 − x2 + x3 − x4

r2 = x1 − x2 − 6x3 + 4x4

r3 = 5x1 + 3x2 + x4

and bound of variables

1 ≤ r1 < +∞ 0 ≤ x1 ≤ 4 (continuous)
8 ≤ r2 < +∞ 2 ≤ x2 ≤ 5 (integer)
5 ≤ r3 < +∞ 0 ≤ x3 ≤ 1 (integer)

3 ≤ x4 ≤ 8 (continuous)

The corresponding MPS file may look like the following:

NAME SAMP1

ROWS

N Z

G R1

G R2

G R3

COLUMNS

X1 R1 2.0 R2 1.0

X1 R3 5.0 Z 3.0

MARK0001 ’MARKER’ ’INTORG’

X2 R1 -1.0 R2 -1.0

X2 R3 3.0 Z 7.0

X3 R1 1.0 R2 -6.0

X3 Z -1.0

MARK0002 ’MARKER’ ’INTEND’

X4 R1 -1.0 R2 4.0

X4 R3 1.0 Z 1.0

RHS

RHS1 R1 1.0

RHS1 R2 8.0

RHS1 R3 5.0

BOUNDS

UP BND1 X1 4.0

LO BND1 X2 2.0

UP BND1 X2 5.0

UP BND1 X3 1.0

LO BND1 X4 3.0

UP BND1 X4 8.0

ENDATA

The same example may be coded without INTORG/INTEND markers using the bound
type UI for the variable x2 and the bound type BV for the variable x3:

75

NAME SAMP2

ROWS

N Z

G R1

G R2

G R3

COLUMNS

X1 R1 2.0 R2 1.0

X1 R3 5.0 Z 3.0

X2 R1 -1.0 R2 -1.0

X2 R3 3.0 Z 7.0

X3 R1 1.0 R2 -6.0

X3 Z -1.0

X4 R1 -1.0 R2 4.0

X4 R3 1.0 Z 1.0

RHS

RHS1 R1 1.0

RHS1 R2 8.0

RHS1 R3 5.0

BOUNDS

UP BND1 X1 4.0

LO BND1 X2 2.0

UI BND1 X2 5.0

BV BND1 X3

LO BND1 X4 3.0

UP BND1 X4 8.0

ENDATA

B.13 Specifying predefined basis

The MPS format can also be used to specify some predefined basis for an LP problem, i.e.
to specify which rows and columns are basic and which are non-basic.

The order of a basis file in the MPS format is:

• NAME indicator card;

• data cards (can appear in arbitrary order);

• ENDATA indicator card.

Each data card specifies either a pair ”basic column—non-basic row” or a non-basic
column. All the data cards have the following format.

‘XL’ in the field 1 means that a column, whose name is given in the field 2, is basic,
and a row, whose name is given in the field 3, is non-basic and placed on its lower bound.

‘XU’ in the field 1 means that a column, whose name is given in the field 2, is basic,
and a row, whose name is given in the field 3, is non-basic and placed on its upper bound.

‘LL’ in the field 1 means that a column, whose name is given in the field 3, is non-basic
and placed on its lower bound.

‘UL’ in the field 1 means that a column, whose name is given in the field 3, is non-basic
and placed on its upper bound.

The field 2 contains a column name.

76

If the indicator given in the field 1 is ‘XL’ or ‘XU’, the field 3 contains a row name.
Otherwise, if the indicator is ‘LL’ or ‘UL’, the field 3 is not used and should be empty.

The field 4, 5, and 6 are not used and should be empty.
A basis file in the MPS format acts like a patch: it doesn’t specify a basis completely,

instead that it is just shows in what a given basis differs from the ”standard” basis, where
all rows (auxiliary variables) are assumed to be basic and all columns (structural variables)
are assumed to be non-basic.

As an example here is a basis file that specifies an optimal basis for the example LP
problem given in Section B.11, Page 71:

*000000001111111111222222222233333333334444444444555555555566

*234567890123456789012345678901234567890123456789012345678901

NAME PLAN

XL BIN2 YIELD

XL BIN3 FE

XL BIN4 MN

XL ALUM AL

XL SILICON SI

LL BIN1

LL BIN5

ENDATA

Appendix C

CPLEX LP Format

C.1 Prelude

The CPLEX LP format1 is intended for coding LP/MIP problem data. It is a row-oriented
format that assumes the formulation of LP/MIP problem (1.1)—(1.3) (see Section 1.1,
page 7).

CPLEX LP file is a plain text file written in CPLEX LP format. Each text line of
this file may contain up to 255 characters2. Blank lines are ignored. If a line contains the
backslash character (\), this character and everything that follows it until the end of line
are considered as a comment and also ignored.

An LP file is coded by the user using the following elements:
• keywords;
• symbolic names;
• numeric constants;
• delimiters;
• blanks.
Keywords that may be used in the LP file are the following:

minimize minimum min

maximize maximum max

subject to such that s.t. st. st

bounds bound

general generals gen

integer integers int

binary binaries bin

infinity inf

free

end

All the keywords are case insensitive. Keywords given above on the same line are equiva-
lent. Any keyword (except infinity, inf, and free) being used in the LP file must start

1The CPLEX LP format was developed in the end of 1980’s by CPLEX Optimization, Inc. as an input
format for the CPLEX linear programming system. Although the CPLEX LP format is not as widely used
as the MPS format, being row-oriented it is more convenient for coding mathematical programming models
by human. This appendix describes only the features of the CPLEX LP format which are implemented in
the GLPK package.

2GLPK allows text lines of arbitrary length.

77

78

at the beginning of a text line.
Symbolic names are used to identify the objective function, constraints (rows), and

variables (columns). All symbolic names are case sensitive and may contain up to 16
alphanumeric characters3 (a, . . . , z, A, . . . , Z, 0, . . . , 9) as well as the following characters:

! " # $ % & () / , . ; ? @ _ ‘ ’ { } | ~

with exception that no symbolic name can begin with a digit or a period.
Numeric constants are used to denote constraint and objective coefficients, right-hand

sides of constraints, and bounds of variables. They are coded in the standard form xxEsyy,
where xx is a real number with optional decimal point, s is a sign (+ or -), yy is an integer
decimal exponent. Numeric constants may contain arbitrary number of characters. The
exponent part is optional. The letter ‘E’ can be coded as ‘e’. If the sign s is omitted, plus
is assumed.

Delimiters that may be used in the LP file are the following:

:

+

-

< <= =<

> >= =>

=

Delimiters given above on the same line are equivalent. The meaning of the delimiters will
be explained below.

Blanks are non-significant characters. They may be used freely to improve readability
of the LP file. Besides, blanks should be used to separate elements from each other if there
is no other way to do that (for example, to separate a keyword from a following symbolic
name).

The order of an LP file is:
• objective function definition;
• constraints section;
• bounds section;
• general, integer, and binary sections (can appear in arbitrary order);
• end keyword.
These components are discussed in following sections.

C.2 Objective function definition

The objective function definition must appear first in the LP file. It defines the objective
function and specifies the optimization direction.

The objective function definition has the following form:
{

minimize

maximize

}

f : s c x s c x . . . s c x

where f is a symbolic name of the objective function, s is a sign + or -, c is a numeric
constant that denotes an objective coefficient, x is a symbolic name of a variable.

3GLPK allows symbolic names having up to 255 characters.

79

If necessary, the objective function definition can be continued on as many text lines
as desired.

The name of the objective function is optional and may be omitted (together with the
semicolon that follows it). In this case the default name ‘obj’ is assigned to the objective
function.

If the very first sign s is omitted, the sign plus is assumed. Other signs cannot be
omitted.

If some objective coefficient c is omitted, 1 is assumed.
Symbolic names x used to denote variables are recognized by context and therefore

needn’t to be declared somewhere else.
Here is an example of the objective function definition:

Minimize Z : - x1 + 2 x2 - 3.5 x3 + 4.997e3x(4) + x5 + x6 +

x7 - .01x8

C.3 Constraints section

The constraints section must follow the objective function definition. It defines a system
of equality and/or inequality constraints.

The constraint section has the following form:

subject to

constraint1
constraint2

. . .
constraintm

where constrainti, i = 1, . . . , m, is a particular constraint definition.
Each constraint definition can be continued on as many text lines as desired. How-

ever, each constraint definition must begin on a new line except the very first constraint
definition which can begin on the same line as the keyword ‘subject to’.

Constraint definitions have the following form:

r : s c x s c x . . . s c x











<=

>=

=











b

where r is a symbolic name of a constraint, s is a sign + or -, c is a numeric constant that
denotes a constraint coefficient, x is a symbolic name of a variable, b is a right-hand side.

The name r of a constraint (which is the name of the corresponding auxiliary variable)
is optional and may be omitted (together with the semicolon that follows it). In this case
the default names like ‘r.nnn’ are assigned to unnamed constraints.

The linear form s c x s c x . . . s c x in the left-hand side of a constraint definition has
exactly the same meaning as in the case of the objective function definition (see above).

After the linear form one of the following delimiters that indicate the constraint sense
must be specified:

<= means ‘less than or equal to’
>= means ‘greater than or equal to’
= means ‘equal to’

80

The right hand side b is a numeric constant with an optional sign.

Here is an example of the constraints section:

Subject To

one: y1 + 3 a1 - a2 - b >= 1.5

y2 + 2 a3 + 2

a4 - b >= -1.5

two : y4 + 3 a1 + 4 a5 - b <= +1

.20y5 + 5 a2 - b = 0

1.7 y6 - a6 + 5 a777 - b >= 1

(Should note that it is impossible to express ranged constraints in the CPLEX LP
format. Each a ranged constraint can be coded as two constraints with identical linear
forms in the left-hand side, one of which specifies a lower bound and other does an upper
one of the original ranged constraint.)

C.4 Bounds section

The bounds section is intended to define bounds of variables. This section is optional; if
it is specified, it must follow the constraints section. If the bound section is omitted, all
variables are assumed to be non-negative (i.e. that they have zero lower bound and no
upper bound).

The bounds section has the following form:

bounds

definition1

definition2

. . .
definitionp

where definitionk, k = 1, . . . , p, is a particular bound definition.

Each bound definition must begin on a new line4 except the very first bound definition
which can begin on the same line as the keyword ‘bounds’.

Syntactically constraint definitions can have one of the following six forms:

x >= l specifies a lower bound
l <= x specifies a lower bound
x <= u specifies an upper bound
l <= x <= u specifies both lower and upper bounds
x = t specifies a fixed value
x free specifies free variable

where x is a symbolic name of a variable, l is a numeric constant with an optional sign
that defines a lower bound of the variable or -inf that means that the variable has no
lower bound, u is a numeric constant with an optional sign that defines an upper bound
of the variable or +inf that means that the variable has no upper bound, t is a numeric
constant with an optional sign that defines a fixed value of the variable.

4The GLPK implementation allows several bound definitions to be placed on the same line.

81

By default all variables are non-negative, i.e. have zero lower bound and no upper
bound. Therefore definitions of these default bounds can be omitted in the bounds section.

Here is an example of the bounds section:

Bounds

-inf <= a1 <= 100

-100 <= a2

b <= 100

x2 = +123.456

x3 free

C.5 General, integer, and binary sections

The general, integer, and binary sections are intended to define some variables as integer
or binary. All these sections are optional and needed only in case of MIP problems. If
they are specified, they must follow the bounds section or, if the latter is omitted, the
constraints section.

All the general, integer, and binary sections have the same form as follows:











general

integer

binary











x1

x2

. . .
xq

where xk is a symbolic name of variable, k = 1, . . . , q.
Each symbolic name must begin on a new line5 except the very first symbolic name

which can begin on the same line as the keyword ‘general’, ‘integer’, or ‘binary’.
If a variable appears in the general or the integer section, it is assumed to be general

integer variable. If a variable appears in the binary section, it is assumed to be binary
variable, i.e. an integer variable whose lower bound is zero and upper bound is one. (Note
that if bounds of a variable are specified in the bounds section and then the variable
appears in the binary section, its previously specified bounds are ignored.)

Here is an example of the integer section:

Integer

z12

z22

z35

C.6 End keyword

The keyword ‘end’ is intended to end the LP file. It must begin on a separate line and no
other elements (except comments and blank lines) must follow it. Although this keyword
is optional, it is strongly recommended to include it in the LP file.

5The GLPK implementation allows several symbolic names to be placed on the same line.

82

C.7 Example of CPLEX LP file

Here is a complete example of CPLEX LP file that corresponds to the example given in
Section B.11, page 71.

* plan.lp *\

Minimize

value: .03 bin1 + .08 bin2 + .17 bin3 + .12 bin4 + .15 bin5 +

.21 alum + .38 silicon

Subject To

yield: bin1 + bin2 + bin3 + bin4 + bin5 +

alum + silicon = 2000

fe: .15 bin1 + .04 bin2 + .02 bin3 + .04 bin4 + .02 bin5 +

.01 alum + .03 silicon <= 60

cu: .03 bin1 + .05 bin2 + .08 bin3 + .02 bin4 + .06 bin5 +

.01 alum <= 100

mn: .02 bin1 + .04 bin2 + .01 bin3 + .02 bin4 + .02 bin5 <= 40

mg: .02 bin1 + .03 bin2 + .01 bin5 <= 30

al: .70 bin1 + .75 bin2 + .80 bin3 + .75 bin4 + .80 bin5 +

.97 alum >= 1500

si1: .02 bin1 + .06 bin2 + .08 bin3 + .12 bin4 + .02 bin5 +

.01 alum + .97 silicon >= 250

si2: .02 bin1 + .06 bin2 + .08 bin3 + .12 bin4 + .02 bin5 +

.01 alum + .97 silicon <= 300

Bounds

bin1 <= 200

bin2 <= 2500

400 <= bin3 <= 800

100 <= bin4 <= 700

bin5 <= 1500

End

* eof *\

Appendix D

Stand-alone LP/MIP Solver

The GLPK package includes the program glpsol which is a stand-alone LP/MIP solver.
This program can be invoked from the command line of from the shell to read LP/MIP
problem data in any format supported by GLPK, solve the problem, and write the obtained
problem solution to a text file in plain format.

Usage

glpsol [options. . .] [filename]

General options

--glp read LP/MIP model in GNU LP format
--mps read LP/MIP problem in fixed MPS format (default)
--freemps read LP/MIP problem in free MPS format
--cpxlp read LP/MIP problem in CPLEX LP format
--math read LP/MIP model written in GNU MathProg modeling language
-m filename, --model filename

read model section and optional data section from filename (the same
as --math)

-d filename, --data filename
read data section from filename (for --math only); if model file also
has data section, that section is ignored

-y filename, --display filename
send display output to filename (for --math only); by default the
output is sent to stdout

--min minimization
--max maximization
--scale scale problem (default)
--noscale do not scale problem
--simplex use simplex method (default)
--interior use interior point method (for pure LP only)
-o filename, --output filename

write solution to filename in plain text format
--bounds filename

write sensitivity bounds to filename in plain text format (LP only)

83

84

--tmlim nnn limit solution time to nnn seconds (--tmlim 0 allows obtaining solu-
tion at initial point)

--check do not solve problem, check input data only
--name probname change problem name to probname
--plain use plain names of rows and columns (default)
--orig try using original names of rows and columns (default for --mps)
--wglp filename write problem to filename in GNU LP format
--wmps filename write problem to filename in fixed MPS format
--wfreemps filename

write problem to filename in free MPS format
--wcpxlp filename

write problem to filename in CPLEX LP format
--wtxt filename write problem to filename in plain text format
-h, --help display this help information and exit
-v, --version display program version and exit

Options specific to simplex method

--std use standard initial basis of all slacks
--adv use advanced initial basis (default)
--bas filename read initial basis from filename in MPS format
--steep use steepest edge technique (default)
--nosteep use standard “textbook” pricing
--relax use Harris’ two-pass ratio test (default)
--norelax use standard “textbook” ratio test
--presol use LP presolver (default; assumes --scale and --adv)
--nopresol do not use LP presolver
--wbas filename write final basis to filename in MPS format

Options specific to MIP

--nomip consider all integer variables as continuous (allows solving MIP as
pure LP)

--first branch on first integer variable
--last branch on last integer variable
--drtom branch using heuristic by Driebeck and Tomlin (default)
--mostf branch on most fractional varaible
--dfs backtrack using depth first search
--bfs backtrack using breadth first search
--bestp backtrack using the best projection heuristic (default)
--bestb backtrack using node with best local bound

For description of the MPS format see Appendix B, page 66.

For description of the CPLEX LP format see Appendix C, page 77.

For description of the modeling language see the document “GLPK: Modeling Language
GNU MathProg” included in the GLPK distribution.

