
Fast dis
riminative pattern mining usingsparsity-indu
ing loss fun
tionsNo Institute GivenKeywords: dis
riminative pattern mining, graph mining, sparsity, supportve
tors, 
lassi�
ation, regressionAbstra
t. Apriori-based mining algorithms enumerate frequent patternseÆ
iently, but the resulting large number of patterns makes it diÆ
ultto dire
tly apply subsequent learning tasks. Re
ently, eÆ
ient iterativemethods are proposed for mining dis
riminative patterns for 
lassi�
a-tion and regression. These methods iteratively exe
ute dis
riminativepattern mining algorithm and update example weights to emphasize onexamples whi
h re
eived large errors in the previous iteration. In this pa-per, we study a family of loss fun
tions that indu
es sparsity on exampleweights. Most of the resulting example weights be
ome zeros, so we 
aneliminate those examples from dis
riminative pattern mining, leading toa signi�
ant de
rease in sear
h spa
e and time. In 
omputational exper-iments we 
ompare and evaluate various loss fun
tions in terms of theamount of sparsity indu
ed and resulting speed-up obtained.1 Introdu
tionStru
tured data is be
oming in
reasingly popular in data mining and ma
hinelearning. Mu
h of the worlds' interesting data are not ve
torial (tabular) data,but stru
tured data su
h as trees, sequen
es and graphs. Examples of su
h datain
ludes HTML and RNA se
ondary stru
tures as trees, time series data as se-quen
e, 
hemi
al 
ompounds and so
ial networks as graphs. In
uen
ed by thepioneering work of [1℄ for mining frequent asso
iation rules, various frequentpattern mining algorithms are developed for various 
lass of stru
tured data;su
h as LCM [17℄ for itemsets, TREEMINER [21℄ for trees, Pre�xSpan [10℄ forsequen
es and gSpan [20℄ for graphs. These frequent stru
ture enumeration al-gorithms give us a foundation to apply basi
 statisti
al learning tools on theobtained set of patterns. However, it is often argued that the number of frequentpatterns is too large for the subsequent learning tasks, thus summarization of fre-quent patterns is ne
essary [19℄. A 
ommon heuristi
 to over
ome this diÆ
ultyis to set support (frequen
y of a pattern) high or maxpat (maximum patternsize) low to limit the number of resulting frequent patterns [18℄. More advan
edapproa
hes attempt to mine dis
riminative graphs by using the labels of exam-ples as external information sour
e to prune the sear
h spa
e [2℄. Correlationor Information gain are typi
ally employed to estimate the informativeness of



IIpatterns and prune uninteresting patterns. However, the set of patterns 
olle
tedby su
h a two-step method is not optimal for di�erent learning tasks.More re
ently, substru
ture boosting approa
h has been su

essfully appliedto di�erent learning tasks on various kinds of data in
luding RNA se
ondarystru
ture 
lustering [16℄, video 
lassi�
ation [9℄, and QSAR [12℄. These methods
ombine statisti
al learning algorithms with pattern mining algorithms to di-re
tly mine dis
riminative patterns whi
h are optimal for the subsequent learn-ing task in an iterative fashion [7℄. The basi
 strategy is similar to ordinaryboosting where examples whi
h re
eived large errors in the previous iterationare intensively learned in the next iteration. In ea
h iteration, one feature isadded to the solution set, and the weights for all the previously found featuresare updated. The algorithm 
onsists of two parts, namely, dis
riminative patternmining part whi
h sear
hes for the most dis
riminative pattern, and the learningpart whi
h 
omputes the example weights. In this paper, we study a family of lossfun
tions that indu
e sparsity on example weights. The sear
h spa
e formed by
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Fig. 1. Comparison of pattern mining with non-sparse example weights (left) to sparseexample weights (right). If sparsity is enfor
ed, example weights nearby zero (su
h asthose of the se
ond and the fourth example) on the left shrinks to zeros. Su
h examples
an be eliminated from subsequent pattern mining, and the resulting sear
h spa
e forpattern mining shrinks from one on the left to the one on the right.both non-sparse weights and sparse weights is illustrated in Figure 1. If sparsityis enfor
ed, example weights nearby zero (su
h as those of the se
ond and thefourth example) on the left shrinks to zeros. Su
h examples 
an be eliminatedfrom subsequent pattern mining, and the resulting sear
h spa
e for pattern min-ing shrinks from one on the left to the one on the right. Therefore we 
an expe
tthat pattern mining with sparse example weights is more eÆ
ient than one withnon-sparse weights, and that we should fully exploit this property.In ma
hine learning literature, support ve
tor ma
hine (SVM) is known toa
hieve sparsity on the example weights, and only a small fra
tion of examplesre
eives non-zero weights (so-
alled support ve
tors) [13℄. We propose to take fulladvantage of sparsity of support ve
tors for speeding-up pattern mining. Lending



IIIthe knowledge from sparse kernel learning methods [13℄, we study di�erent typesof loss fun
tions whi
h indu
e sparsity.This paper is organized as follows. In Se
tion 2, we brie
y review substru
tureboosting algorithm to understand what makes the example weight sparse, andgive instan
es of loss fun
tions whi
h do not have sparse solutions. Se
tion 3
onsiders regression methods in terms of ability to a
hieve sparsity on exampleweights. Se
tion 4 shows 
omputational results. Se
tion 5 
on
ludes the paper.2 Review on substru
ture boosting for 
lassi�
ationThis se
tion brie
y reviews substru
ture boosting algorithm. The substru
tureboosting algorithm 
onstru
ts a linear model by progressively adding a featureat ea
h iteration. Our feature ve
tor is a binary indi
ator of patterns (Figure2), and a label yi is atta
hed to ea
h feature ve
tor. We represent the presen
eor absen
e of the j-th pattern in the i-th graph by an indi
ator fun
tion whi
hreturns 1 if xi;j 2X, �1 otherwise, where X is a universe of patterns in a givendataset.
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APatternsFig. 2. Feature spa
e based on subgraph patterns. The feature ve
tor 
onsists of binarypattern indi
ators.Suppose for a moment that we solve 
lassi�
ation problem, then our 
lassi�eris represented as a linear 
ombination of patterns with 
orresponding weights;yi = sgn( pXj=1 xi;j�j);where yi 2 0; 1 is a binary target value of i-th graph, xi is a length p ve
tor
orresponding pattern presen
e/absen
e in the i-th graph, and � is a length pweight ve
tor to be learned. Note that the potential number of features p is quitelarge, so a large amount of memory is required when p is large. Therefore weregularize the weight ve
tor � with respe
t to `1 norm so that most of patternshave zero weights. By employing hinge loss for 
lassi�
ation (Figure 3), ourobje
tive fun
tion is written asmin� pXj=1 j�j j+ C nXi=1 241� yi pXj=1 �jxi;j35+ ;



IVwhere C is a regularization parameter and \+" indi
ates positive part. By in-trodu
ing the sla
k variable �, we 
an formulate a linear programming problem
orresponding to the above obje
tive fun
tion.min�;� pXj=1 j�j j+ C nXi=1 �i (1)s.t. yi pXj=1 xi;j�j + �i � 1; �i � 0 i = 1; : : : ; n: (2)Due to the high dimensionality of �, solving the above primal problem is hard,thus we 
onsider the equivalent dual problem;maxu nXi=1 ui (3)s.t. pXj=1 uixijyi � 1; j = 1; : : : ; p; (4)0 � ui � C; i = 1; : : : ; n: (5)This problem has a large number of 
onstraints 
orresponding to equation (4),but 
olumn generation algorithm [4℄ 
an eÆ
iently solve it by iteratively addingthe mostly violated 
onstraint. The 
onstraint to be added is determined bysolving the following 
olumn generation subproblem;j� = argmaxj nXi=1 uixijyi: (6)In our 
ase this is equivalent to �nding a pattern with the maximum absoluteweighted support by dis
riminative pattern mining. For eÆ
iently traversing thesear
h spa
e, pruning of the sear
h spa
e is 
ru
ial. We employ the followingpruning 
ondition that makes use of target labels y as extra information sour
e,Theorem 1. [8℄ Let us de�ne�(x();j) = maxf2 Xfijyi=+1;xi;j=1gui � X̀i=1 yiui; 2 Xfijyi=�1;xi;j=1gui +X̀i=1 yiuig;where x();j denotes j-th pattern whi
h appears at least on
e in a given data. Ifthe following 
ondition is satis�ed,g� > �(x();j); (7)the inequality g(x0();j) < g� holds for any x0();j su
h that x();j � x0();j . So we 
ansafely prune the parent nodes of x();j without losing the optimal pattern.A pseudo
ode of this substru
ture boosting algorithm for 
lassi�
ation isshown in Algorithm 1.



VAlgorithm 1 Substru
ture boosting algorithm1: Initialization: X̂(0) = ;, u(0)i = 1=n, k = 02: loop3: Find the optimal pattern x� based on u(k)4: if termination 
ondition holds then5: break6: end if7: X̂  X̂ [Xj�8: Solve the restri
ted dual problem (4 ) to obtain u(k+1)9: k = k + 110: end loop2.1 Sparsity on example weightsNoti
e that when C ! 1, then solving (1) amounts to minimizing k�k1 whileignoring �. This 
ase is known as hard margin SVM whi
h does not have regu-larization on � at all. In the dual, C !1 
orresponds to removing upperboundof u in equation (5); maxu pXj=1 uj : (8)s.t. pXj=1 uixijyi � 1; i = 1; : : : ; n; (9)The solution to this linear programming problem o

urs at a vertex of a poly-hedron, and most of the resulting u are zeros. Examples (data points) withnonzero weights u are known as support ve
tors in SVM literature [13℄. Due toKKT 
ondition, the following equations hold;ui0�yiXj xij�j � 1 + �i1A = 0; ui � 0; yiXj xij�j � 1 + � � 0;that is, either ui = 0 or yiPj xij�j � 1 + �i = 0 holds. In order to have moresparsity, more data points should satisfy ui = 0. Geometri
ally speaking, su
h aregion 
orresponds to a 
at segment along the x axis in Figure (3).The longer the segment, the more sparsity is indu
ed. Among loss fun
tionfor 
lassi�
ation (Figure (3) left), only a hinge loss fun
tion turns out to indu
esparsity. Indu
ing more sparsity is important in our 
ase be
ause examples withzero-weights 
an be eliminated from pattern mining. This e�e
t is already illus-trated in Figure 1. A �gure on the left do not have sparsity on example weights,while one on the right has sparsity on example weights; the se
ond and fourthexamples 
an be eliminated sin
e their examples weights are zero.However, the problem of hard margin SVM is that it does not allow anyerror points during training, whi
h is too restri
tive in pra
ti
e. Typi
ally, the
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Fig. 3. Loss fun
tions for binary 
lassi�
ation (left). Loss fun
tions for regression (right).Binomial devian
e: log(1 + exp(�2yf)), exponential loss: exp(�yf), squared loss (y�f)2, hinge loss: (1� yf)+, absolute loss: jy� f j, �-insensitive loss jy� f j� and Huber'sloss: Æ2 (y � f)2 if jy � f j � Æ and Æ(jy � f j � Æ=2) otherwise.trade-o� between sparsity and the number of training errors is 
ontrolled by theregularization parameter C, whi
h is found by a grid sear
h from between 0 and1. �-SVM or its linear programming version (�-L1SVM) [4℄ provides us moresophisti
ated way of 
hoosing regularization parameter. The primal problem of�-L1SVM is written as follows;min�;�;� pXj=1 �j + 1n� nXi=1 �i � � (10)s.t. yi pXj=1 xi;j�j + �i � �; �i � 0; i = 1; : : : ; n; (11)where � is a regularization parameter 
hosen from between 0 and 1. Equivalentdual problem is maxu;
 �
 (12)s.t. nXi=1 yixijui � 
; j = 1; : : : ; p; (13)nXi=1 ui = 1; 0 � ui � 1n� ; i = 1; : : : ; n:In the same way as in L1SVM, sparsity is enfor
ed on example weights u aswe set � smaller, and re
overs hard margin SVM in the limit � ! 0. Indeed� 
ontrols the sparsity of the solution [14℄, and n� is the lower bound of thenumber of support ve
tors [4℄. Regarding the regularization parameter �, thefollowing statements hold:Theorem 2 ([11℄). Assume that the solution of (10) satis�es � � 0.



VII1. � is an upperbound of the fra
tion of margin errors, i.e., the examples withyi pXj=1 xi;j�j < �; i = 1; : : : ; n:2. � is a lowerbound of the fra
tion of the examples su
h thatyi pXj=1 xi;j�j < �; i = 1; : : : ; n:Below, we abbreviate � � L1SVM simply as L1SVM.2.2 Non-sparse example weights of AdaBoostIn this subse
tion, we review AdaBoost [5℄ as an example of iterative learningalgorithm whi
h does not have sparsity on the example weights. AdaBoost iter-atively generates a sequen
e of hypothesis fun
tions to build a linear model thatmaximizes exponential loss (see Figure 3). The obje
tive fun
tion of AdaBoostis as follows.min�;� exp nXi=1 �i!s:t: yi pXj=1 xi;j�j � �i; �i � 0 i = 1; : : : ; n; �j � 0 j = 1; : : : ; pThe example weights of AdaBoost is updated by the following update rule [5℄.ui  ui exp�� log�1� errerr � � I(yi 6= f(xi))� ; (14)where err stands for error rates of the 
urrent hypothesis. AdaBoost does nothave a regularization on �, and the resulting � is has no stru
ture su
h assparsity.3 Sparse substru
ture boosting for regressionThis se
tion deal with regression problem, so the target response value y takesreal value. Without loss of generality, below we assume that y is 
enter to zero.We 
ompare two regression methods; LASSO (Least Absolute Shrinkage Opera-tor) [15℄ that not indu
e sparsity and linear programming regression that indu
esparsity on example weights.LASSO employs least squared loss (Figure 3) and `1 regularization withrespe
t to a parameter ve
tor �. The LASSO regression is formulated by the



VIIIquadrati
 programming problem as follows,min�;� pXj=1 �j + C2 nXi=1 �2is:t: pXj=1 xi;j�j � yi � �i; yi � pXj=1 xi;j�j � �i; �i � 0 i = 1; : : : ; nwhere C is a regularization parameter. The dual of the LASSO ismaxu � 12C pXj=1 u2j + nXi=1 yiui; s:t:� 1 � uj nXi=1 yixi;j � 1; j = 1; : : : ; p:We 
an see that the example weights u is regularized with respe
t to `2-norm.`2-norm lo
ates ea
h uj on the surfa
e of an p-dimensional Eu
lid ball, but noone uj be
omes zero, so does not have sparsity. A sparse regression example isa linear programming regression(LPR) whi
h employs �-insensitive loss, and `1norm on a parameter ve
tor �. The primal problem of LPR is as follows;min�;� nXi=1 �i + C nXi=1 �i + C��s:t: pXj=1 xi;j�j � yi � �+ �i; yi � pXj=1 xi;j� � �+ �i; �i � 0; i = 1; : : : ; nwhere C and � are both regularization parameters. � 
ontrols the ratio of sup-port ve
tors inside the �-tube, and C parameter 
ontrols the trade-o� betweenover�tting and under�tting given �. KKT 
ondition tells us that either ui = 0 orPj xij�j�y��+�i = 0 holds. Geometri
ally speaking, more data points shouldlie on a 
at region of the �-insensitive loss fun
tion (Figure 3) in order to havemore sparsity. Sparsity and a

ura
y is trade-o� [14℄, and 
ontrolled through Cand �.4 ExperimentsIn this se
tion, we 
ompare several 
lassi�
ation and regression methods in termsof indu
ed sparsity and the resulting mining time. For the purpose of 
omparingdi�erent learning algorithms in a fair setting, we �x the mining algorithm togSpan [20℄ for graph mining 1. We show the basi
 statisti
s of the data used inTable 1.1 Graph mining toolbox, available from http://www.nowozin.net/sebastian/gboost/,is used for all the experiments.



IXTable 1. Datasets Summary. The number of positive data (POS) and negative data(NEG) are only provided for 
lassi�
ation datasets. Average number of atoms (ATOM)and bonds (BOND) are shown for ea
h dataset. TIME indi
ates the time in se
ondsfor enumerating all the frequent patterns up to size 20.ALL POS NEG ATOM BOND TIMECPDB 684 341 343 14.1 14.6 7126EDKB 146 - - 19.5 21.1 2893Table 2. In
uen
e of the 
hoi
e of � parameter on L1SVM. Pat: the number of patternswith nonzero �, Itr: the number of iterations, �: the margin, Time: total time, SVs:mean ratio of support ve
tors over the iterations, A

: the 
lassi�
ation a

ura
y inthe training set. We 
an observe that � lowerbounds the number of support ve
tors.� 0.01 0.1 0.2 0.3 0.4Itr 67 73 47 26 47Pat 66 65 46 24 46Time 1410 618 315 156 116� 2.41e-11 0.130 0.0346 0.0809 0.143SVs 0.537 0.549 0.572 0.585 0.745A

 0.993 0.973 0.938 0.892 0.839The CPDB dataset is available from the supplementary information of [6℄,and used for 
lassi�
ation experiments. The EDKB data is provided by NationalCenter for Toxi
ologi
al Resear
h 2, and 
ontains 146 mole
ules with a
tivitylevels in real number. This dataset is used for regression experiments. We usedAMD Opteron 2.6GHz system with 32GB RAM for all the experiments. As areferen
e, frequent mining with minimum support 2 and maximum pattern size20 was run, and it took 2893 se
onds and 7126 se
onds on EDKB dataset andCPDB dataset, respe
tively. The number of frequent subgraphs up to the size20 were 4.4 million and 1 million for EDKB and CPDB dataset, respe
tively.For 
lassi�
ation problem, we 
ompare L1SVM with AdaBoost in terms ofindu
ed sparsity on example weights and resulting running time. Convergen
eof L1SVM was 
he
ked using early stopping 
riterion P yixijui � 
 + �; where� is set to 0:05. AdaBoost was run 100 iterations.Figure 4 shows the transition of example weights of AdaBoost(left) andL1SVM with � set to 0.1(
enter) and 0.01(right). As expe
ted, AdaBoost doesnot generates sparsity on examples weights (left). In 
ontrast, examples weightsof L1SVM be
ome sparser as iteration pro
eeds (
enter, right). Setting � = 0:1for L1SVM means that more than 10% of examples re
eive nonzero weightsat ea
h iteration. Behavior of L1SVM for various regularization parameter � issummarized in Table 2.We 
an observe that � lowerbounds the number of support ve
tors.2 http://edkb.fda.gov/databasedoor.html



X Figure 5 (left) shows the evolution of a

ura
y as a fun
tion of total time forL1SVM and AdaBoost. It is observed that L1SVM 
olle
t dis
riminative patternsand learns 
lassi�er mu
h faster in total time than AdaBoost. Figure 5 (right)shows the mining time at ea
h iteration. Due to the indu
ed sparsity, miningtime of L1SVM is shorter than that of AdaBoost ex
ept for last a few iterations.Mining time per iteration was 4.23 se
onds and 16.4 se
onds for AdaBoost andL1SVM, respe
tively. However, the last iterations of L1SVM did not 
ontributeto the in
rease in a

ura
y, so one 
an stop it earlier by using validation set.Then the resulting mining time per iteration is shorter than that of AdaBoostas we 
an see in Figure 5 (right).
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al axis shows example ID,and the horizontal axis shows iterations. Nonzero weights are represented in bla
k,and zero weights are represented in white. Noti
e that weights of L1SVM be
omein
reasingly sparser as iteration pro
eeds.
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h iteration.



XIFigure 6 shows transition of per
entage of support ve
tors and mining timefor L1SVM and AdaBoost in details. As AdaBoost does not have sparsity onexample weights, per
entage of support ve
tors for AdaBoost is always 1.00.In 
ontrast, per
entage of support ve
tors for L1SVM keeps de
reasing (right),whi
h makes signi�
ant di�eren
e in mining time. In Figure 7, we 
an observethat mining is always more 
ostly than optimization for AdaBoost (left). On theother hand, optimization is always more 
ostly than mining for L1SVM ex
eptfor last a few iterations. Noti
e that mining time for L1SVM is a magnitudeshorter than that for AdaBoost, a

ounting for the e�e
t of indu
ed sparsity.
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Fig. 6. Transition of per
entage of SVs and mining time for AdaBoost (left) and L1SVM(right).
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ompare LASSO with LPR. Convergen
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he
ked using early stopping 
riterionPni=1 xijui � 1+ �; where � wasset to 0.05. Example weights for pattern mining at ea
h iteration is shown in
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al axis shows exampleID, and the horizontal axis shows iterations. Nonzero weights are represented in bla
k,and zero weights are represented in white. Example weights of LASSO are not sparse,in 
ontrast to LPR.Figure 8. As expe
ted, example weights of LASSO is not sparse, in 
ontrast tothat of LPR. This makes di�eren
e in the size of sear
h spa
e and eÆ
ien
y inpattern mining.Table 3 shows the behavior of LPR when 
hanging �. We 
an observe that �lowerbounds the number of support ve
tors. As we set � larger, more examples(data points) be
ome support ve
tors, and pattern mining be
omes faster.Table 3. In
uen
e of the 
hoi
e of � parameter on LPR. Pat: the number of patternswith nonzero �, Itr: the number of iterations, �: the margin, Time: total time, �: tubesize automati
 determined by �, SVs: mean ratio of support ve
tors over the iterations,Q2: the regression Q2 in the training set. The tube size � is re
overed after solving theoptimization problem [13℄.� 0.01 0.1 0.2 0.3 0.4Itr 118 3 2 2 2Pat 24 1 1 1 1Time 2120 34.3 14.6 15.9 15.4� 7.23e-12 0.386 0.349 0.261 0.219SVs 0.382 0.402 0.598 0.645 0.701Q2 1.00 0.535 0.345 0.359 0.358Figure 9 (left) shows the evolution of regression a

ura
y Q2 as a fun
tionof total time in se
onds for LASSO and LPR. It 
learly demonstrates fasterlearning of LPR 
ompared with LASSO. Q2 of LPR is almost 1.0 around 700se
onds, but that of LASSO was still around 0.8, and was 0.85 after another1800 se
onds. Figure 9 (right) shows the mining time for LASSO and LPR atea
h iteration. This �gure gives us an interesting observation; mining part ofLASSO is slow, while that of LPR is fast and 
alled many times. On average,mining time per iteration was 15.1 se
onds for LPR, whi
h was mu
h faster than



XIIILASSO that took 182 se
onds on average. One interpretation of this observationis that LPR su

essfully split the original problem into many small parts, whileLASSO tried to solve the hard original problem dire
tly, whi
h turned out to bemore time 
onsuming in this 
ase.
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tion of total time in se
-onds (total time = optimization time + mining time). (right) Mining time of LASSOand LPR at ea
h iteration.Figure 10 and Figure 11 give us more detailed information. Figure 10 showsper
entage of support ve
tors for LASSO and LPR in details. As LASSO doesnot have sparsity on example weights, per
entage of support ve
tors for LASSOis always 1.00 after the �rst iteration. In 
ontrast, per
entage of support ve
torsfor LPR is less than 1.00 until last a few iterations, whi
h makes signi�
antdi�eren
e in mining time. In Figure 11, we 
an observe that time used for miningis almost always shorter than time used for optimization in LPR, but vi
e versein LASSO.
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