Fast discriminative pattern mining using
sparsity-inducing loss functions

No Institute Given

Keywords: discriminative pattern mining, graph mining, sparsity, support
vectors, classification, regression

Abstract. Apriori-based mining algorithms enumerate frequent patterns
efficiently, but the resulting large number of patterns makes it difficult
to directly apply subsequent learning tasks. Recently, efficient iterative
methods are proposed for mining discriminative patterns for classifica-
tion and regression. These methods iteratively execute discriminative
pattern mining algorithm and update example weights to emphasize on
examples which received large errors in the previous iteration. In this pa-
per, we study a family of loss functions that induces sparsity on example
weights. Most of the resulting example weights become zeros, so we can
eliminate those examples from discriminative pattern mining, leading to
a significant decrease in search space and time. In computational exper-
iments we compare and evaluate various loss functions in terms of the
amount of sparsity induced and resulting speed-up obtained.

1 Introduction

Structured data is becoming increasingly popular in data mining and machine
learning. Much of the worlds’ interesting data are not vectorial (tabular) data,
but structured data such as trees, sequences and graphs. Examples of such data
includes HTML and RNA secondary structures as trees, time series data as se-
quence, chemical compounds and social networks as graphs. Influenced by the
pioneering work of [1] for mining frequent association rules, various frequent
pattern mining algorithms are developed for various class of structured data;
such as LCM [17] for itemsets, TREEMINER [21] for trees, PrefixSpan [10] for
sequences and gSpan [20] for graphs. These frequent structure enumeration al-
gorithms give us a foundation to apply basic statistical learning tools on the
obtained set of patterns. However, it is often argued that the number of frequent
patterns is too large for the subsequent learning tasks, thus summarization of fre-
quent patterns is necessary [19]. A common heuristic to overcome this difficulty
is to set support (frequency of a pattern) high or maxpat (maximum pattern
size) low to limit the number of resulting frequent patterns [18]. More advanced
approaches attempt to mine discriminative graphs by using the labels of exam-
ples as external information source to prune the search space [2]. Correlation
or Information gain are typically employed to estimate the informativeness of

II

patterns and prune uninteresting patterns. However, the set of patterns collected
by such a two-step method is not optimal for different learning tasks.

More recently, substructure boosting approach has been successfully applied
to different learning tasks on various kinds of data including RNA secondary
structure clustering [16], video classification [9], and QSAR [12]. These methods
combine statistical learning algorithms with pattern mining algorithms to di-
rectly mine discriminative patterns which are optimal for the subsequent learn-
ing task in an iterative fashion [7]. The basic strategy is similar to ordinary
boosting where examples which received large errors in the previous iteration
are intensively learned in the next iteration. In each iteration, one feature is
added to the solution set, and the weights for all the previously found features
are updated. The algorithm consists of two parts, namely, discriminative pattern
mining part which searches for the most discriminative pattern, and the learning
part which computes the example weights. In this paper, we study a family of loss
functions that induce sparsity on example weights. The search space formed by

class veights exanpl es search space
class veights exanples search space

L oas | ©—© tlos | ©—©
@{% M= 2
s | 00| (€79 (@@

Fig. 1. Comparison of pattern mining with non-sparse example weights (left) to sparse
example weights (right). If sparsity is enforced, example weights nearby zero (such as
those of the second and the fourth example) on the left shrinks to zeros. Such examples
can be eliminated from subsequent pattern mining, and the resulting search space for
pattern mining shrinks from one on the left to the one on the right.

both non-sparse weights and sparse weights is illustrated in Figure 1. If sparsity
is enforced, example weights nearby zero (such as those of the second and the
fourth example) on the left shrinks to zeros. Such examples can be eliminated
from subsequent pattern mining, and the resulting search space for pattern min-
ing shrinks from one on the left to the one on the right. Therefore we can expect
that pattern mining with sparse example weights is more efficient than one with
non-sparse weights, and that we should fully exploit this property.

In machine learning literature, support vector machine (SVM) is known to
achieve sparsity on the example weights, and only a small fraction of examples
receives non-zero weights (so-called support vectors) [13]. We propose to take full
advantage of sparsity of support vectors for speeding-up pattern mining. Lending

II1

the knowledge from sparse kernel learning methods [13], we study different types
of loss functions which induce sparsity.

This paper is organized as follows. In Section 2, we briefly review substructure
boosting algorithm to understand what makes the example weight sparse, and
give instances of loss functions which do not have sparse solutions. Section 3
considers regression methods in terms of ability to achieve sparsity on example
weights. Section 4 shows computational results. Section 5 concludes the paper.

2 Review on substructure boosting for classification

This section briefly reviews substructure boosting algorithm. The substructure
boosting algorithm constructs a linear model by progressively adding a feature
at each iteration. Our feature vector is a binary indicator of patterns (Figure
2), and a label y; is attached to each feature vector. We represent the presence
or absence of the j-th pattern in the i-th graph by an indicator function which
returns 1 if z; ; € X, —1 otherwise, where X is a universe of patterns in a given
dataset.

Patterns

Fig. 2. Feature space based on subgraph patterns. The feature vector consists of binary
pattern indicators.

Suppose for a moment that we solve classification problem, then our classifier
is represented as a linear combination of patterns with corresponding weights;

p
yi =sgn(>_ wi;By),

j=1

where y; € 0,1 is a binary target value of i-th graph, x; is a length p vector
corresponding pattern presence/absence in the i-th graph, and B is a length p
weight vector to be learned. Note that the potential number of features p is quite
large, so a large amount of memory is required when p is large. Therefore we
regularize the weight vector 8 with respect to £; norm so that most of patterns
have zero weights. By employing hinge loss for classification (Figure 3), our
objective function is written as

min XP: 1851 + 02”: [1 — Yi XP:BJ‘%J'-I ;

+

v

where C' is a regularization parameter and “+” indicates positive part. By in-
troducing the slack variable £, we can formulate a linear programming problem
corresponding to the above objective function.

P n
m'n2|ﬂj|+02& (1)
pe j=1 i=1

p
S.t. yi2$i7jﬂj+§i21, &E>0 i=1,...,n. (2)
j=1

Due to the high dimensionality of 3, solving the above primal problem is hard,
thus we consider the equivalent dual problem;

n
mgx Z (173 (3)
i=1

p
s.t. Zulmzjyl S 17 .7 = 17 Ry 2 (4)
j=1
0<u; <C, i=1,...,n. (5)

This problem has a large number of constraints corresponding to equation (4),
but column generation algorithm [4] can efficiently solve it by iteratively adding
the mostly violated constraint. The constraint to be added is determined by
solving the following column generation subproblem;

n
J* = argmax Y uixjy;. (6)
J i=1

In our case this is equivalent to finding a pattern with the maximum absolute
weighted support by discriminative pattern mining. For efficiently traversing the
search space, pruning of the search space is crucial. We employ the following
pruning condition that makes use of target labels y as extra information source,

Theorem 1. [8] Let us define

¢ ¢
p(z(),;) = max{2 Z (G Zyiuu 2 Z Ui + Zyiui},
i=1 i=1

{ilyi=+1,2;,;=1} {ilyi=—1,24,;=1}

where () ; denotes j-th pattern which appears at least once in a given data. If
the following condition is satisfied,

9" > mxg.), (7)

the inequality g(m’() ;) < g~ holds for any z, ; such that z() ; C x’() j- S0 we can
safely prune the parent nodes of x() ; without losing the optimal pattern.

A pseudocode of this substructure boosting algorithm for classification is
shown in Algorithm 1.

Algorithm 1 Substructure boosting algorithm

1: Initialization: X =0, u® = 1/n, k=0

2: loop

3: Find the optimal pattern z* based on u*)
4: if termination condition holds then
5 break

6: end if

7 X+ XUXj
8: Solve the restricted dual problem (4) to obtain w(**!
9: E=k+1

10: end loop

2.1 Sparsity on example weights

Notice that when C' — oo, then solving (1) amounts to minimizing ||€||; while
ignoring (3. This case is known as hard margin SVM which does not have regu-
larization on @ at all. In the dual, C' — oo corresponds to removing upperbound
of w in equation (5);

P
max Z Uj. (8)
j=1

p
S.t. Zuimijyi S 1, 1= 1,. L., n, (9)

j=1

The solution to this linear programming problem occurs at a vertex of a poly-
hedron, and most of the resulting u are zeros. Examples (data points) with
nonzero weights u are known as support vectors in SVM literature [13]. Due to
KKT condition, the following equations hold;

U inI'ijﬁj—l-f-fi =0, wu;>0, inI'ijﬁj—l-f—fZO,
J J

that is, either u; = 0 or y; Zj z;j8; — 1+ & = 0 holds. In order to have more
sparsity, more data points should satisfy u; = 0. Geometrically speaking, such a
region corresponds to a flat segment along the z axis in Figure (3).

The longer the segment, the more sparsity is induced. Among loss function
for classification (Figure (3) left), only a hinge loss function turns out to induce
sparsity. Inducing more sparsity is important in our case because examples with
zero-weights can be eliminated from pattern mining. This effect is already illus-
trated in Figure 1. A figure on the left do not have sparsity on example weights,
while one on the right has sparsity on example weights; the second and fourth
examples can be eliminated since their examples weights are zero.

However, the problem of hard margin SVM is that it does not allow any
error points during training, which is too restrictive in practice. Typically, the

VI

25 " - 25
\ ' binomial — squared—
2 b exponential —— 2 uber ——
squared —— absolute —
15 | hinge ——— 15
2 ’ %
o o
05 | 05
of 0
05 1 1 1 1 1 1 1 05 1 1 1 1 1 1 1
2 -15 -1 05 0 05 1 15 2 2 -15 -1 -05 0 05 1 15 2

Fig. 3. Loss functions for binary classification (left). Loss functions for regression (right).
Binomial deviance: log(1 + exp(—2yf)), exponential loss: exp(—yf), squared loss (y —
f)?, hinge loss: (1 —yf)+, absolute loss: |y — f|, e-insensitive loss |y — f|. and Huber’s
loss: $(y— f)? if ly — f| < and §(|y — f| — §/2) otherwise.

trade-off between sparsity and the number of training errors is controlled by the
regularization parameter C', which is found by a grid search from between 0 and
00. v-SVM or its linear programming version (v-L1SVM) [4] provides us more
sophisticated way of choosing regularization parameter. The primal problem of
v-L1SVM is written as follows;

p n
1
min i+ — ; — 10
,3767;)2/8] TLI/Z:& p (10)
j=1 =1
p
sty wighi+&2p &20, i=1...n, (11)
=1

where v is a regularization parameter chosen from between 0 and 1. Equivalent
dual problem is

max —y (12)
n
i=1
Zuizl, 0<uy; <—,1=1,...,n.
= nv

In the same way as in L1SVM, sparsity is enforced on example weights u as
we set v smaller, and recovers hard margin SVM in the limit v — 0. Indeed
v controls the sparsity of the solution [14], and nv is the lower bound of the
number of support vectors [4]. Regarding the regularization parameter v, the
following statements hold:

Theorem 2 ([11]). Assume that the solution of (10) satisfies p > 0.

VII

1. v is an upperbound of the fraction of margin errors, i.e., the examples with
P
inmmﬂj <p,t=1,...,n.
j=1
2. v is a lowerbound of the fraction of the examples such that
P
inmi,jﬁj <p,i=1,...,n.
=1

Below, we abbreviate v — L1SV M simply as L1ISVM.

2.2 Non-sparse example weights of AdaBoost

In this subsection, we review AdaBoost [5] as an example of iterative learning
algorithm which does not have sparsity on the example weights. AdaBoost iter-
atively generates a sequence of hypothesis functions to build a linear model that
maximizes exponential loss (see Figure 3). The objective function of AdaBoost
is as follows.

min ex i
p
j=1
The example weights of AdaBoost is updated by the following update rule [5].

1—err

U; 4 Ui €XP (—log (> Iy # f(mi))> , (14)

err

where err stands for error rates of the current hypothesis. AdaBoost does not
have a regularization on 3, and the resulting £ is has no structure such as
sparsity.

3 Sparse substructure boosting for regression

This section deal with regression problem, so the target response value y takes
real value. Without loss of generality, below we assume that y is center to zero.
We compare two regression methods; LASSO (Least Absolute Shrinkage Opera-
tor) [15] that not induce sparsity and linear programming regression that induce
sparsity on example weights.

LASSO employs least squared loss (Figure 3) and ¢; regularization with
respect to a parameter vector 8. The LASSO regression is formulated by the

VIII

quadratic programming problem as follows,
p C n
min > Bi+5 > &
e j=1 2 i=1

p p
st Y miiBi—yi <&, yi— Y wijBi<&, &>0 i=1,...,n

=1 =1

where C' is a regularization parameter. The dual of the LASSO is

mgx—%z:luj+z;yiui, s.t.—lgujz;yixmgl, j=1...,p.
j= i= i=

We can see that the example weights u is regularized with respect to ¢2-norm.
£5-norm locates each u; on the surface of an p-dimensional Euclid ball, but no
one u; becomes zero, so does not have sparsity. A sparse regression example is
a linear programming regression(LPR) which employs e-insensitive loss, and ¢;
norm on a parameter vector 3. The primal problem of LPR is as follows;

miél Zn:ﬂz +C'zn:§i + Cve
=1 i=1

p p
s.t. Z"Ez,jﬂ]_ylge_‘_é.la yl_le,jﬂge_'_fl: 51207 121,,77,

j=1 j=1

where C' and v are both regularization parameters. v controls the ratio of sup-
port vectors inside the e-tube, and C' parameter controls the trade-off between
overfitting and underfitting given v. KKT condition tells us that either u; = 0 or
Ej z;j8; —y —e+& = 0 holds. Geometrically speaking, more data points should
lie on a flat region of the e-insensitive loss function (Figure 3) in order to have
more sparsity. Sparsity and accuracy is trade-off [14], and controlled through C
and v.

4 Experiments

In this section, we compare several classification and regression methods in terms
of induced sparsity and the resulting mining time. For the purpose of comparing
different learning algorithms in a fair setting, we fix the mining algorithm to
gSpan [20] for graph mining !. We show the basic statistics of the data used in
Table 1.

! Graph mining toolbox, available from http://www.nowozin.net/sebastian/gboost/,
is used for all the experiments.

IX

Table 1. Datasets Summary. The number of positive data (POS) and negative data
(NEG) are only provided for classification datasets. Average number of atoms (ATOM)
and bonds (BOND) are shown for each dataset. TIME indicates the time in seconds
for enumerating all the frequent patterns up to size 20.

|ALL POS NEG ATOM BOND TIME
CPDB| 684 341 343 14.1 146 7126
EDKB| 146 - - 19.5 21.1 2893

Table 2. Influence of the choice of v parameter on LISVM. Pat: the number of patterns
with nonzero 3, Itr: the number of iterations, p: the margin, Time: total time, SVs:
mean ratio of support vectors over the iterations, Acc: the classification accuracy in
the training set. We can observe that v lowerbounds the number of support vectors.

v 0.01 0.1 | 0.2 03 | 04
Itr 67 73 47 26 47
Pat 66 65 46 24 46
Time| 1410 | 618 | 315 | 156 | 116
p 2.41e-11|0.130|0.0346(0.0809(0.143
SVs | 0.537 [0.549| 0.572 | 0.585 |0.745
Acc | 0.993 [0.973]| 0.938 | 0.892 (0.839

The CPDB dataset is available from the supplementary information of [6],
and used for classification experiments. The EDKB data is provided by National
Center for Toxicological Research 2, and contains 146 molecules with activity
levels in real number. This dataset is used for regression experiments. We used
AMD Opteron 2.6GHz system with 32GB RAM for all the experiments. As a
reference, frequent mining with minimum support 2 and maximum pattern size
20 was run, and it took 2893 seconds and 7126 seconds on EDKB dataset and
CPDB dataset, respectively. The number of frequent subgraphs up to the size
20 were 4.4 million and 1 million for EDKB and CPDB dataset, respectively.

For classification problem, we compare L1ISVM with AdaBoost in terms of
induced sparsity on example weights and resulting running time. Convergence
of LISVM was checked using early stopping criterion) y;x;;u; < v + €, where
€ is set to 0.05. AdaBoost was run 100 iterations.

Figure 4 shows the transition of example weights of AdaBoost(left) and
L1SVM with v set to 0.1(center) and 0.01(right). As expected, AdaBoost does
not generates sparsity on examples weights (left). In contrast, examples weights
of LISVM become sparser as iteration proceeds (center, right). Setting v = 0.1
for L1ISVM means that more than 10% of examples receive nonzero weights
at each iteration. Behavior of LISVM for various regularization parameter v is
summarized in Table 2.

We can observe that v lowerbounds the number of support vectors.

% http:/ /edkb.fda.gov/databasedoor.html

Figure 5 (left) shows the evolution of accuracy as a function of total time for
L1SVM and AdaBoost. It is observed that L1SVM collect discriminative patterns
and learns classifier much faster in total time than AdaBoost. Figure 5 (right)
shows the mining time at each iteration. Due to the induced sparsity, mining
time of L1SVM is shorter than that of AdaBoost except for last a few iterations.
Mining time per iteration was 4.23 seconds and 16.4 seconds for AdaBoost and
L1SVM, respectively. However, the last iterations of L1SVM did not contribute
to the increase in accuracy, so one can stop it earlier by using validation set.
Then the resulting mining time per iteration is shorter than that of AdaBoost
as we can see in Figure 5 (right).

1 2 3 40 50 6 7 8 0 10

Fig. 4. Transition of example weights of AdaBoost (left), that of LISVM (v = 0.1)
(center) and that of LISVM (v = 0.01) (right). The vertical axis shows example ID,
and the horizontal axis shows iterations. Nonzero weights are represented in black,
and zero weights are represented in white. Notice that weights of L1ISVM become
increasingly sparser as iteration proceeds.

N o === AdaBoOSt
< s [1SVM
098 P Q 1w
* el e aa g
S, 085 g w
% 08 g
s § w Y
Q 075 Q
© £
07 =R
=)
c
0.65 E 107
:
06 w— | 1 S\/M
10°

[500 1000 1500 2000 2500 3000 3500 4000 4500
time (sec) iteration

Fig.5. (left) Evolution of Q2 for AdaBoost and L1ISVM as a function of total time
in seconds (total time = optimization time + mining time). (right) Mining time of
AdaBoost and L1ISVM at each iteration.

XI

Figure 6 shows transition of percentage of support vectors and mining time
for LISVM and AdaBoost in details. As AdaBoost does not have sparsity on
example weights, percentage of support vectors for AdaBoost is always 1.00.
In contrast, percentage of support vectors for LISVM keeps decreasing (right),
which makes significant difference in mining time. In Figure 7, we can observe
that mining is always more costly than optimization for AdaBoost (left). On the
other hand, optimization is always more costly than mining for L1ISVM except
for last a few iterations. Notice that mining time for L1ISVM is a magnitude
shorter than that for AdaBoost, accounting for the effect of induced sparsity.

AdaBoost L1SVM
2 2 1 200

~ o —
D s 59 B° q 2
2 2 g 3
3]) <
9] (TR Py
o E & £
=S P M -1 =
2 D Q05 100
g S o 2

£ 8 £
2 E @ S

o
£ o s X E
=== %SVs(left axis)
T ime(right axis) = = = £6SVs(left axis)
] ime(right axis)
[10 20 30 40 50 60 70 80 90 100 \\'
o 10 20 30 40 50 o 70
iteration iteration

Fig. 6. Transition of percentage of SVs and mining time for AdaBoost (left) and L1ISVM
(right).

AdaBoost LISVM
) 6
= = = s Optimization time

o % 4 | m=— mining time
5} Q
2 23
=)
o 2 2
< £
= —~

i} O
8 4 (]
3 K
© L
= == = s Optimization time §
= === Mining time had

0O 10 20 30 40 50 60 70 8 9 100 “o 10 20 30 40 50 60 70

iteration iteration

Fig. 7. Transition of optimization time and mining time for AdaBoost (left) L1ISVM
(right).

For regression we compare LASSO with LPR. Convergence of LASSO and
LPR was checked using early stopping criterion 2?21 z;ju; < 14+€, where € was
set to 0.05. Example weights for pattern mining at each iteration is shown in

XII

Fig. 8. Transition of example weights of LASSO (left), that of LPR (C = 1000, v = 0.1)
(center) and that of LPR(C = 1000, » = 0.01) (right). The vertical axis shows example
ID, and the horizontal axis shows iterations. Nonzero weights are represented in black,
and zero weights are represented in white. Example weights of LASSO are not sparse,
in contrast to LPR.

Figure 8. As expected, example weights of LASSO is not sparse, in contrast to
that of LPR. This makes difference in the size of search space and efficiency in
pattern mining.

Table 3 shows the behavior of LPR when changing v. We can observe that v
lowerbounds the number of support vectors. As we set v larger, more examples
(data points) become support vectors, and pattern mining becomes faster.

Table 3. Influence of the choice of v parameter on LPR. Pat: the number of patterns
with nonzero 3, Itr: the number of iterations, p: the margin, Time: total time, €: tube
size automatic determined by v, SVs: mean ratio of support vectors over the iterations,
Q2: the regression Q2 in the training set. The tube size € is recovered after solving the
optimization problem [13].

v 0.01 01]02]03]04
Itr 118 3 2 2 2
Pat 24 1 1 1 1
Time| 2120 |34.3|14.6 (159|154
€ 7.23e-12|0.386(0.349(0.261|0.219
SVs | 0.382 [0.402(0.598(0.645(0.701
Q2 1.00 {0.535|0.345|0.359(0.358

Figure 9 (left) shows the evolution of regression accuracy Q2 as a function
of total time in seconds for LASSO and LPR. It clearly demonstrates faster
learning of LPR compared with LASSO. @2 of LPR is almost 1.0 around 700
seconds, but that of LASSO was still around 0.8, and was 0.85 after another
1800 seconds. Figure 9 (right) shows the mining time for LASSO and LPR at
each iteration. This figure gives us an interesting observation; mining part of
LASSO is slow, while that of LPR is fast and called many times. On average,
mining time per iteration was 15.1 seconds for LPR, which was much faster than

XIIT

LASSO that took 182 seconds on average. One interpretation of this observation
is that LPR successfully split the original problem into many small parts, while
LASSO tried to solve the hard original problem directly, which turned out to be
more time consuming in this case.

o H
0.95 E .‘: .
O WEa
09 ;
g I
0.85 . 8
"""" K= 4
08t f esmmmmssmammeen® ’G
[N R 2
o ’ KUt
(9]
0.7
E
0.65 E
g
06 g
===:LASSO €
- == LASSO
w— PR
0.55 E -
05

10°
0 500 1000 1500 2000 2500 3000 0 20 20 50 20 T00 20

time (sec) iteration

Fig. 9. (left) Evolution of Q2 for LASSO and LPR as a function of total time in sec-
onds (total time = optimization time + mining time). (right) Mining time of LASSO
and LPR at each iteration.

Figure 10 and Figure 11 give us more detailed information. Figure 10 shows
percentage of support vectors for LASSO and LPR in details. As LASSO does
not have sparsity on example weights, percentage of support vectors for LASSO
is always 1.00 after the first iteration. In contrast, percentage of support vectors
for LPR is less than 1.00 until last a few iterations, which makes significant
difference in mining time. In Figure 11, we can observe that time used for mining
is almost always shorter than time used for optimization in LPR, but vice verse

in LASSO.

LPR

15 1000

we =+ 065Vs(left axis) n [===+%SVs(eft axis) ”
—— Time(right axis) | — Time(right axis) -~

LASSO

058 500

mining time (sec)
% support vectors
mining time (sec)

% support vectors

iteration iteration

Fig. 10. Transition of % of SVs and mining time for LASSO (left) and LPR (right).

XIvV

LASSO
LPR
7
8
[}
g’ 2
[Q
D 5 7}
o jo
= o
= £
] o
w 3 Q
~)
[~
£ = = = sOptimization time] <]
= = mining time E
“’. =
L 4 Vammtasnspmusmnannnn — - -
= = =+ 0ptimization time
== Mining time
0 2 4 6 8 o 2 N 8 o 20 40 60 80 100 120
iteration iteration

Fig. 11. Transition of optimization time and mining time for LASSO (left) LPR (right).

5 Conclusion

In this paper we proposed to use loss functions that induce sparsity on exam-
ple weights for speeding-up discriminative pattern mining. We compared popular
loss functions in classification and regression in terms of induced sparsity and re-
sulting mining time. Computational experiments on real-world datasets showed
that either exploiting sparsity or not makes large difference in pattern mining.
It is worth noting that other iterative mining method for classification and re-
gression can also benefit the claim of this paper and enjoy sparsity by carefully
choosing loss functions. Resulting efficiency will be appreciated especially when
mining problem is hard and time consuming such as the case of frequent graph
mining. From an optimization point of view, one does not have to limit a loss
function to convex one, but can employ, e.g., ramp loss function [3], which is not
convex but induce improved sparsity, for solving large problems.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Pro-
ceedings of the 20th International Conference on Very Large Databases, pages
487-499, 1994.

2. B. Bringmann, A. Zimmermann, L. D. Raedt, and S. Nijssen. Don’t be afraid
of simpler patterns. In 10th European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD), pages 55-66. Sprinter, 2006.

3. R. Collobart, J. Weston, and L. Bottou. Trading convexity for scalability. In
Proceedings of the 23rd International Conference on Machine Learning, pages 201—
208, 2006.

4. A. Demiriz, K.P. Bennet, and J. Shawe-Taylor. Linear programming boosting via
column generation. Machine Learning, 46(1-3):225-254, 2002.

5. Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learn-
ing and an application to boosting. Journal of Computer and System Sciences,
55(1):119-139, 1996.

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

XV

C. Helma, T. Cramer, S. Kramer, and L.D. Raedt. Data mining and machine
learning techniques for the identification of mutagenicity inducing substructures
and structure activity relationships of noncongeneric compounds. J. Chem. Inf.
Comput. Sci., 44:1402-1411, 2004.

H. Kim, S. Kim, T. Weninger, J. Han, and T. Abdelzaher. Ndpmine: Efficiently
mining discriminative numerical features for pattern-based classification. In Euro-
pean Conference on Principles and Practice of Knowledge Discovery in Databases
(PKDD), pages 35-50. Sprinter, 2010.

T. Kudo, E. Maeda, and Y. Matsumoto. An application of boosting to graph
classification. In Advances in Neural Information Processing Systems 17, pages
729-736. MIT Press, 2005.

S. Nowozin, G. Bakir, and K. Tsuda. Discriminative subsequence mining for ac-
tion classification. In Proceedings of the 11th IEEE International Conference on
Computer Vision (ICCV 2007), pages 1919-1923. IEEE Computer Society, 2007.

J. Pei, J. Han, B. Mortazavi-asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and
M. Hsu. Mining sequential patterns by pattern-growth: The prefixspan approach.
IEEE Transactions on Knowledge and Data Engineering, 16(11):1424-1440, 2004.
G. Ritsch, S. Mika, B. Scholkopf, and K.-R. Miiller. Constructing boosting algo-
rithms from SVMs: an application to one-class classification. IEEE Trans. Patt.
Anal. Mach. Intell., 24(9):1184-1199, 2002.

H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, and K. Tsuda. gBoost: A math-
ematical programming approach to graph classification and regression. Machine
Learning, 75(1):69-89, 2009.

B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, 2002.

I. Steinwart. Sparseness of support vector machines. Journal of Machine Learning
Research, 4:1071-1105, 2003.

R. Tibshrani. Regression shrinkage and selection via the LASSO. J. Royal. Statist.
Soc B., 58(1):267-288, 1996.

K. Tsuda and K. Kurihara. Graph mining with variational dirichlet process mixture
models. In STAM Conference on Data Mining (SDM), 2008.

T. Uno, M. Kiyomi, and H. Arimura. LCM ver.3: collaboration of array, bitmap
and prefix tree for frequent itemset mining. In OSDM ’05: Proceedings of the 1st
international workshop on open source data mining, pages 77-86, 2005.

N. Wale and G. Karypis. Comparison of descriptor spaces for chemical compound
retrieval and classification. In Proceedings of the 2006 IEEE International Confer-
ence on Data Mining, pages 678-689, 2006.

Y. Xiang, J. Ruoming, F. David, and F. F. Dragan. Succinct summarization
of transactional databases: an overlapped hyperrectangle scheme. In KDD ’08:
Proceeding of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 758-766, New York, NY, USA, 2008. ACM.

X. Yan and J. Han. gSpan: graph-based substructure pattern mining. In Proceed-
ings of the 2002 IEEE International Conference on Data Mining, pages 721-724.
IEEE Computer Society, 2002.

M. J. Zaki. Efficiently mining frequent trees in a forest: algorithms and applica-
tions. In IEEE Transactions on Knowledge and Data Engineering, pages 1021-
1035, 2005.

