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Abstract: Conditional image generation, which aims to generate consistent images with a user’s input, is one of the
critical problems in computer vision. Text-to-image models have succeeded in generating realistic images for
simple situations in which a few objects are present. Yet, they often fail to generate consistent images for texts
representing complex situations. Scene-graph-to-image models have the advantage of generating images for
complex situations based on the structure of a scene graph. We extended a scene-graph-to-image model to
an image generation model from a hyper scene graph with trinomial hyperedges. Our model, termed hsg2im,
improved the consistency of the generated images. However, hsg2im has difficulty in generating natural and
consistent images for hyper scene graphs with many objects. The reason is that the graph convolutional
network in hsg2im struggles to capture relations of distant objects. In this paper, we propose a novel image
generation model which addresses this shortcoming by introducing object attention layers. We also use a
layout-to-image model auxiliary to generate higher-resolution images. Experimental validations on COCO-
Stuff and Visual Genome datasets show that the proposed model generates more natural and consistent images
to user’s inputs than the cutting-edge hyper scene-graph-to-image model.

1 INTRODUCTION

Conditional image generation, which aims to gener-
ate consistent images with a user’s input, is one of the
critical problems in computer vision. Text-to-image
models (Reed et al., 2016; Zhang et al., 2017; Zhang
et al., 2018; Odena et al., 2017) have been extensively
studied in this problem because of their simple in-
put and applicability in various fields. Although these
models have succeeded in generating realistic images
for simple situations with few objects, they often fail
to generate consistent images for texts representing
complex situations with multiple objects and their re-
lationships.

This drawback stems from the difficulty of map-
ping a long sentence into a single feature vector.
Scene-graph-to-image models can address this draw-
back by using the structured representation of scene
graphs (Johnson et al., 2018). A scene graph con-
sists of nodes representing objects and binomial edges
describing relationships between two objects (Figure
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2 (a)), enabling it to explicitly represent a complex
situation compared with text. Scene-graph-to-image
models simplify the encoding of complex situations
by converting each object into a feature vector. From
these facts, these models expect to generate proper
images for complex situations.

On the other hand, scene-graph-to-image models
also have a shortcoming, i.e., inaccurate object posi-
tions. We addressed this shortcoming by proposing
an image generation model from hyper scene graphs
hsg2im (Miyake et al., 2023), as an extension of
sg2im (Johnson et al., 2018). Hyper scene graphs
include trinomial hyperedges representing positional
relations among three objects. We increased the types
of hyperedges (Miyake et al., ) of our previous work
(Miyake et al., 2023). A trinomial hyperedge repre-
sents a positional relation among three objects. A tri-
nomial hyperedge enables the model to process the
three objects with one application of a Multi-Layer
Perceptron (MLP), which makes capturing the rela-
tion among three objects easier.

However, hsg2im also has a shortcoming of gen-
erating an unnatural layout for a hyper scene graph
with many objects. Figure 1 shows examples of this
shortcoming. In the layout generated by our hsg2im
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Figure 1: Examples showing the shortcoming of hsg2im (Miyake et al., 2023; Miyake et al., ).

(Miyake et al., ), the objects are neither arranged natu-
rally nor consistently. In the example of (a), many ob-
jects, i.e., floor-wood (red box), table (purple), spoon
(purple), and bowl (red) overlap each other in the
middle center, and they cannot be seen in the gen-
erated image. In the example of (b), the hyper scene
graph has a hyperedge woman (light blue) - between
- woman (purple) → person (red); however, woman
(light blue) and woman (purple) overlap each other in
the layout generated by hsg2im, and we cannot see
woman (light blue) clearly.

The reason lies in the graph convolutional net-
work, which converts each object vector to reflect the
other objects and relations in hsg2im. The graph con-
volutional network converts the feature vector based
on the edges in the hyper scene graph. This process
makes it difficult to generate object vectors that ac-
curately reflect distant objects and relations. Conse-
quently, hsg2im often fails to arrange the objects nat-
urally for a hyper scene graph with many objects.

To address this shortcoming, we propose Object
Attention hsg2im (OA-hsg2im). OA-hsg2im has self-
attention layers for object vectors, which calculate the
attention score for all combinations of two objects in a
hyper scene graph. By converting object vectors with
the attention scores, OA-hsg2im enables the objects to
attend other objects relevant to themselves regardless
of the distance in a hyper scene graph. This conver-
sion also allows the object vectors to reflect a wider
range of objects in the hyper scene graph. Therefore,
OA-hsg2im is expected to generate natural layouts
and images which are consistent with the input hy-

per scene graph even if it consists of many objects. In
addition, we use a pre-trained layout-to-image model
LayoutDiffusion (Zheng et al., 2023) as an auxiliary
model to generate higher-resolution images.

In this paper, we also tackle an investigation of
prejudice in the image generation model. In recent
years, the movements for eliminating such prejudice
about genders or professions are becoming more ac-
tive (Zhang et al., 2022). Vision and language datasets
often reflect people’s prejudices (Tang et al., 2021),
and image generation models could learn them. We
investigate the prejudice about genders in the pre-
trained LayoutDiffusion (Zheng et al., 2023).

2 RELATED WORK

We categorize conditional image generation models
from three kinds of inputs; texts (Reed et al., 2016;
Zhang et al., 2017; Zhang et al., 2018; Odena et al.,
2017), layouts (Sun and Wu, 2019; He et al., 2021;
Zheng et al., 2023; Hinz et al., 2022), and scene
graphs (Johnson et al., 2018; Miyake et al., 2023;
Miyake et al., ; Herzig et al., 2020). Text-to-image
models have succeeded in generating realistic im-
ages for simple situations in which a few objects are
present. Meanwhile, they often fail to generate con-
sistent images for texts representing complex situa-
tions. Layout-to-image models and scene-graph-to-
image models overcome this shortcoming of text-to-
image models.



For layout-to-image models, He et al. proposed
a model Layout2img, which generates consistent fea-
ture vectors for each object and generates natural im-
ages (He et al., 2021). Zhang et. al proposed a layout-
to-image diffusion model LayoutDiffusion, which has
a diffusion architecture (Ho et al., 2020), enabling
to generate higher-quality images than GAN-based
methods (Zheng et al., 2023). Though layout-to-
image models can control the position of the gener-
ated object with the input, they have difficulty in gen-
erating an image from a text due to the dissimilarity
of the structures between a text and a layout.

For scene-graph-to-image models, Johnson et al.
proposed a model sg2im (Johnson et al., 2018).
Scene-graph-to-image models can generate proper
images for complex situations due to the powerful
structured representation of scene graphs (Johnson
et al., 2018). Also, scene-graph-to-image models can
be easily applied to text-to-image models due to the
similarity of the structures between a text and a scene
graph. Actually, Schuster et al. worked on the trans-
formation from a text to a scene graph (Schuster et al.,
2015).

Some researchers have attempted to generate
more consistent images from scene graphs. Herzig et
al. generated images from canonicalized scene graph
(Herzig et al., 2020). Vo et al. introduced an auxiliary
classifier loss in terms of the binomial relations (Vo
and Sugimoto, 2020). We proposed hsg2im, which is
an image generation model from a hyper scene graph
with trinomial hyperedges (Miyake et al., 2023), by
extending sg2im and we also increased the types of
hyperedges (Miyake et al., ). The trinomial hyperedge
allows hsg2im to convolve wider ranges of a scene
graph at once, which improves the positional relations
of objects. These methods are useful for generating
objects with accurate positional relations and thus can
often generate natural layouts for scene graphs with a
small number of objects. However, they often fail to
generate natural layouts for a scene graph with many
objects, since these methods use only MLPs for graph
convolution, which makes generating object vectors
reflecting a wide range of scene graphs difficult. In
this paper, we focus on scene-graph-to-image mod-
els due to their advantages and aim to overcome their
shortcoming, i.e., generating an unnatural layout for
a scene graph with many objects. For generating nat-
ural layouts for scene graphs with many objects, we
propose OA-hsg2im, a new image generation model
from a hyper scene graph using object attention.

Some researchers have also attempted to gener-
ate natural and high-resolution images from scene
graphs. Sortino et al. and Yang et al. have succeeded
in generating more realistic images with a VQ-VAE

architecture (Van Den Oord et al., 2017) and a dif-
fusion model architecture (Ho et al., 2020), respec-
tively (Sortino et al., 2023; Yang et al., 2022). These
models do not employ GAN (Goodfellow et al., 2014)
architecture, and thus can be trained stably to gen-
erate realistic and high-resolution images. However,
they require a high training cost: the former per-
forms complex processing such as gradient compu-
tation and optimization of discrete variables and the
latter performs a per-pixel calculation. For example,
a diffusion-based image generation model Patch Dif-
fusion (Wang et al., 2023) takes four days for training
using 16 V100 GPUs, and a VQVAE-based 2D im-
age to 3D image model PixelSynth consumes about
five days for training with four 2080 Ti GPUs (Rock-
well et al., 2021). In this paper, we use a pre-trained
layout-to-image model LayoutDiffusion (Zheng et al.,
2023) as an auxiliary model for generating natural and
high-resolution image, which makes us avoid a high
training cost.

3 TARGET PROBLEM

3.1 Image Generation from a Hyper
Scene Graph

We defined a hyper scene graph as a scene graph
with an additional hyperedge which represents a re-
lation among three or more objects (Miyake et al.,
2023). Following our previous work, we focus on re-
lations among three objects for simplicity as hyper-
edges and set our target problem to creating generator
G(H) which generates an image Î from a hyper scene
graph H = (V,E,Q). Here, V = {v1, . . . ,vnv} denotes
the set of nodes, where nv represents the number of
nodes. E denotes the set of binomial edges in a scene
graph, satisfying E ⊆V ×R2×V , where R2 is the en-
tire set of labels for binomial relations. Note that for
(vi,r j,vk) ∈ E, i ̸= k. A binomial edge is directed,
i.e., (vi,r j,vk) and (vk,r j,vi) are distinct. Q denotes
the set of trinomial hyperdeges in H, which satisfies
Q ⊆V ×R3 ×V ×V , where R3 denotes the entire set
of labels for the trinomial relations. A trinomial hy-
peredge (vi,r j,vk,vl) ∈ Q satisfies i ̸= k, i ̸= l, k ̸= l
and is directed as a binomial edge. Figure 2 (b) shows
an example of a hyper scene graph.

3.2 Evaluation Metrics

We aim to generate natural layouts and images that
are consistent with the input, even for complex scene
graphs with multiple objects. We evaluate both the
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Figure 2: Example of a scene graph (a) and a hyper scene graph (b). This Figure is from (Miyake et al., ). Set V of objects
are the same in both (a) and (b), and they are given by V = {cat, dog, sheep, grass}. The set of the binomial edges in (a) and
(b) are given by E = {(v1,r1(left of),v2), (v2,r2(left of),v3), (v3,r3(on),v4)} and E = {(v3,r3(on),v4)}, respectively. The
set of the trinomial hyperedges in (b) is given by Q = {(v1,r4(between),v2,v3)}. The path cat → left of → dog corresponds
to the binomial edge (v1(cat)), left of,v2(dog)) and represents that a cat is located to the left of a dog. Also, the path cat →
between → dog → sheep corresponds to the trinomial edge (v1(cat)),between,v2(dog),v2(sheep)) and represents from left
to right, a cat, a dog, and a sheep aligned in a row.

consistency and the naturalness of the output image.
First, we discuss the input consistency. Our main
objective is to create improved layouts, and we as-
sess the consistency of these layouts by analyzing the
positional relationship between objects connected to
the same edge or hyperedge. Intersection over Union
(IoU) (Rezatofighi et al., 2019) is one of the evalu-
ation metrics for the object positions in the layouts,
which is used in the sg2im paper (Johnson et al.,
2018). IoU evaluates the similarity of the layouts be-
tween generated and ground truth layouts, which does
not assess the consistency between the input and gen-
erated layout. The layout which aligns with the input
scene graph is not necessarily unique, and our goal is
not to generate identical layouts to the ground truth
layouts. Therefore, we do not use IoU. We had pro-
posed PTO and AoO as the evaluation metrics for the
consistency with the input (Miyake et al., 2023), and
then we modified them along with the addition of the
types of hyperedge in (Miyake et al., ). In this paper,
we use PTO and AoO (Miyake et al., ), which are ex-
plained later in Sections 3.2.1 and 3.2.2, respectively.

Second, we explain how to evaluate the natural-
ness of the generated images. We adopt two met-
rics, i.e., Inception Score (IS) (Salimans et al., 2016)
and Fréchet Inception Distance (FID) (Heusel et al.,
2017), which are widely used as the evaluation met-
rics of the naturalness of the images (Sortino et al.,
2023). We explain them in Sections 3.2.3 and 3.2.4,
respectively.

3.2.1 Positional relation of Three Objects (PTO)

PTO (Miyake et al., ) evaluates the proportion
of correctly generated the three bounding boxes
for each edge type. Let bi = (xi0,xi1,yi0,yi1)
be a rectangle bounding box with vertices
(xi0,yi0), (xi0,yi1), (xi1,yi0), (xi1,yi1), where xi0 < xi1
and yi0 < yi1, and R3 = {between, stacked, nested}.
A set of bounding boxes {bi,b j,bk} corresponding
to a hyperedge (vi,rl ,v j,vk) ∈ Q is considered

correctly generated if they satisfy all of the following
conditions for each trinomial relation r ∈ R3.

The conditions of hyperedge (vi,between,v j,vk)
(Figure 3 (a)) are defined as follows:

1. bi,b j,bk are lined up from left to right in this order
without overlapping, i.e., xi0 < xi1 < x j0 < x j1 <
xk0 < xk1.

2. bi,b j,bk are not large objects such as the back-
ground, i.e., wi < 0.7w and w j < 0.7w and wk <
0.7w, where w is the image width and wi = xi1 −
xi0 is the width of i-th bounding box.

3. bi,b j,bk are of nearly equal size, i.e., 1
2 < wi

w j
< 2

and 1
2 < hi

h j
< 2 and 1

2 <
w j
wk

< 2 and 1
2 <

h j
hk

< 2,
where hi = yi1−yi0 is the height of the i-th bound-
ing box.

4. bi,b j,bk are not largely apart horizontally, i.e.,
0.5max(wi,w j)> x j0−xi1 and 0.5max(w j,wk)>
xk0 − x j1.

5. bi,b j,bk are not largely apart vertically, i.e.,
0.7max(hi,h j) > y j0 − yi1 and 0.7max(h j,hk) >
yk0 − y j1.

The conditions of hyperedge (vi,stacked,v j,vk)
(Figure 3 (b)) are the same with the conditions of hy-
peredge (vi,between,v j,vk), in which x and y are ex-
changed. This relation represents the situation that
the three bounding boxes of similar sizes are aligned
vertically in close positions without overlapping.

The conditions of hyperedge (vi,nested,v j,vk)
(Figure 3 (c)) are defined as follows:

1. bi,b j,bk are not large objects such as the back-
ground, i.e., wi < 0.7w and w j < 0.7w and wk <
0.7w, where w is the image width and wi = xi1 −
xi0 is the width of i-th bounding box.

2. The inclusion relation bi ⊃ b j ⊃ bk holds horizon-
tally, i.e., xi0 < x j0 < xk0 < xk1 < x j1 < xi1.
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Figure 3: Illustration of the bounding boxes corresponding
to the three types of hyperedges (vi,rl ,v j,vk). This Figure
is from (Miyake et al., ).

3. The inclusion relation bi ⊃ b j ⊃ bk holds verti-
cally, i.e., yi0 < y j0 < yk0 < yk1 < y j1 < yi1.

Using the above conditions, PTO for a hyperedge
type r is expressed as follows:

PTOr =
1
Nr

Nr

∑
l=1

J(bli,bl j,blk), (1)

where Nr is the number of the hyperedge r in the test
dataset. bli,bl j and blk are the bounding boxes cor-
responding to the l-th hyperedge r, and J(·, ·, ·) is the
function which takes 1 if the three bounding boxes
satisfy all conditions of hyperedge r and 0 oherwise.

3.2.2 Area of Overlapping (AoO)

AoO (Miyake et al., ) measures the overlap of
the three objects connected to a trinomial hyper-
edge. Note that the objects connected to the hyper-
edge between and stacked should not overlap each
other, while those connected to the hyperedge nested
should. AoO is defined differently for the former and
the latter trinomial relations as follows:

AoOr =



1
Nr

∑Nr
l=1(IoM(bli,bl j)+ IoM(bli,blk)

+IoM(bl j,blk))

if r ∈ {stacked,between},
3− 1

Nr
∑Nr

l=1(IoM(bli,bl j)+ IoM(bli,blk)

+IoM(bl j,blk))

if r = nested,
(2)

where IoM(·, ·) representing the Intersection over
Minimum between two input bounding boxes mea-
sures the overlapping of the bounding box as follows:

IoM(X ,Y ) =
S(X ∩Y )

min(S(X),S(Y ))
. (3)

Here S(·) represents the area of the input region. The
smaller AoO is, the better the overlapping of the three
objects is controlled.

3.2.3 Inception Score (IS)

We use IS (Salimans et al., 2016) as a measure for
evaluating the naturalness of the generated image. IS
is obtained using Inception Network trained on Im-
ageNet (Russakovsky et al., 2015; Szegedy et al.,
2015) with the following equation:

IS = exp(EÎ [DKL(p(y|Î))∥p(y)]), (4)

where DKL(·||·) is Kullback-Leibler (KL) divergence
between distributions. p(y|Î) is the probability distri-
bution of a label y of a given generated image Î pre-
dicted by Inception Network, and p(y) = EÎ [p(y|Î)]
is its marginal probability. A higher IS indicates that
the generated images are more natural, as the score
increases as the class labels of the generated images
become more easily identifiable and more diverse.

3.2.4 Fréchet Inception Distance (FID)

Fréchet Inception Distance (FID) (Heusel et al.,
2017), which evaluates the naturalness of the images,
is the distance between the distribution of the embed-
ded representations of the ground truth and generated
images and is thus consistent with humans’ intuition.
FID is calculated using Inception Network, the same
as IS, with the following equation:

FID = ∥m− m̂∥2
2 +Tr(C+Ĉ−2(CĈ)1/2), (5)

where m and C are the average vector and the co-
variance matrix of the feature vectors of the ground
truth images obtained from Inception Network, re-
spectively. m̂ and Ĉ are those of the generated images,
respectively. A lower FID indicates that the gener-
ated images are more natural, as the score decreases
when the feature distribution of the generated images
is close to that of the ground truth images.

4 Original Model: hsg2im

hsg2im (Miyake et al., 2023; Miyake et al., ), which
is based on an image generation model from a scene
graph sg2im (Johnson et al., 2018), generates an im-
age from a hyper scene graph. sg2im has an MLP
for the binomial edges net1 and an MLP for the di-
mension reduction net2 in its graph convolution net-
work. hsg2im has an additional MLP net3 in graph
convolutional network of sg2im for processing tri-
nomial hyperedges and uses a pre-trained layout-to-
image model Layout2img (He et al., 2021) for gener-
ating higher-quality images.

hsg2im generates images as follows: first, objects
and edge labels in a hyper scene graph are converted



Figure 4: Flowchart of the hyper graph convolutional layer of hsg2im (Miyake et al., 2023; Miyake et al., ). This Figure is
from (Miyake et al., 2023). The part without the yellow region corresponds to that of the graph convolutional network of
sg2im (Johnson et al., 2018). net1, net2, and net3 represent MLPs for binomial edges, dimension reduction, and trinomial
hyperedges, respectively.

into embedding vectors and inputted into the hyper
graph convolutional network. The hyper graph con-
volutional network converts each object vector so that
it reflects other objects and relations. The graph con-
volutional network consists of five hyper graph con-
volutional layers, and the output of the previous layer
is used as the input to the next layer. Figure 4 shows
the process flow of one of the layers when the scene
graph in Figure 2 (b) is the input. The output of
the graph are then used by a box regression network
to predict bounding boxes. Finally, Layout2img (He
et al., 2021) generates an image from the bounding
boxes.

Though hsg2im possesses the advantage of easily
capturing the relation among three objects, it has also
the disadvantage of often failing to generate natural
layouts for a hyper scene graph with many objects.
The reason is that hsg2im uses only MLPs for graph
convolution, which makes generating object vectors
reflecting a wide range of scene graphs difficult.

5 PROPOSED MODEL: OA-hsg2im

We propose Object Attention hsg2im (OA-hsg2im) to
address the shortcoming of hsg2im, i.e., generating an
unnatural layout for a scene graph with many objects.
An overview of the generator of OA-hsg2im is shown
in Figure 5. The modifications in OA-hsg2im from
hsg2im are summarized as follows:

• OA-hsg2im introduces object attention layers to
reflect the relation between distant objects.

• OA-hsg2im performs a positional encoding for
object vectors to give the positional information
in the hyper scene graph object vectors.

• OA-hsg2im employs a pre-trained layout-to-
image model LayoutDiffusion (Zheng et al.,

2023) to generate higher-quality images than Lay-
out2img (He et al., 2021).

In this Section, we explain these three modifications.
OA-hsg2im has object attention layers before each

of the graph convolutional layers. There are Nl object
attention layers and Nl graph convolution layers and
the output of the previous layer is used as the input
of the next layer. A flow of the i-th object attention
layer and hyper graph convolutional layer is shown
in Figure 6. The i-th object attention layer converts
object vectors Di−1 using attention scores, which are
computed for all combinations of two objects in a hy-
per scene graph, with Multi-Head Attention, which
is the same architecture with self-attention in trans-
former (Vaswani et al., 2017). The attention of the j-
th head in the i-th object attention layer is performed
as follows:

Attention(Query,Key,Value)

= softmex

(
Query∗Key⊤√

d/Nh

)
Value, (6)

where Query=Di−1W Q
i j , Key=Di−1W K

i j and Value=
Di−1WV

i j . Nh is the number of the heads. The con-
versions from Di−1 to Query, Key, Value are per-
formed with the linear layers and W Q

i, j, W K
i, j, WV

i, j are
the weight of these layers. The vectors obtained from
each head are concatenated and fed into a linear layer.
The resulting object vectors and edge features cal-
culated from relation vectors Fi−1 are fed into hy-
per graph convolutional layer, which is used in the
hsg2im (Miyake et al., 2023; Miyake et al., ). We
obtain object vectors Di ∈ Rnv×d and relation vectors
Fi ∈ Rnr×d , where nv is the number of objects, nr is
the add-sum of the number of edges and hyperedges
and d is the dimension of object and relation vectors.

We gain D0 and F0 from the object embedding
network and the relation embedding network, respec-



Figure 5: Example of generating an image with OA-hsg2im. The modified parts from hsg2im (Miyake et al., ) are highlighted
in yellow. Nl(= 12) is the number of object attention layers and graph convolutional layers.

Figure 6: Flow of the i-th object attention layer and hyper graph convolutional layer. In the Add and Norm, we perform the
batch normalization to the add-sum of the two input vectors. In the Concat, we concatenate the object vectors obtained from
each head of attention.

tively. The attention score, which represents the de-
gree of the relevance of two objects, makes the ob-
ject attend to other ones regardless of the distance be-
tween them in the hyper scene graph. Therefore, we
can obtain object vectors reflecting a wider range of
objects in the hyper scene graph than hsg2im (Miyake
et al., 2023; Miyake et al., ) and thus OA-hsg2im is
expected to generate more natural layouts.

Positional encoding is conducted to give the posi-
tional information in the scene graph object vectors.
We use graph Laplacian as the positional encoding
following the graph transformer (Dwivedi and Bres-
son, 2020). The graph Laplacian ∆ ∈ Rnv×nv are cal-
culated as follows:

∆ = I−M−1/2AM−1/2, (7)
where I ∈ Rnv×nv is the identity matrix, M ∈ Rnv×nv

and A ∈ Rnv×nv represent the degree matrix and the
adjacency matrix, respectively. As in the graph trans-
former paper (Dwivedi and Bresson, 2020), we add
positional encoding vectors T ∈ Rnv×d , which are
converted from ∆ ∈ Rnv×d with a linear layer, to ob-
ject vectors D0.

Next, we describe image generation using Layout-
Diffusion (Zheng et al., 2023). To generate higher-

resolution images (256×256 pixels), we use a pre-
trained layout-to-image model LayoutDiffusion as an
auxiliary model. LayoutDiffusion takes layout L =
{(vi,bi)}nv

i=1 as input. Set V = {(vi)}nv
i=1 of objects

is obtained from the input hyper scene graph and set
B̂ = {(bi)}nv

i=1 of bounding boxes is generated by OA-
hsg2im. LayoutDiffusion has a diffusion architecture
(Ho et al., 2020) and thus can generate higher-quality
and higher-resolution images than GAN-based meth-
ods.

6 PREJUDICE in LayoutDiffusion

We investigate prejudice about genders in pre-trained
LayoutDiffusion (Zheng et al., 2023) as follows. We
generate a layout for each of the three hyper scene
graphs in Figure 8 with OA-hsg2im trained on the VG
dataset (Krishna et al., 2017), which is explained in
Section 7.1. We generate ten images, each has three
persons, for each of the three layouts in Figure 8 by
changing the seed of the random function with Lay-
outDiffusion (Zheng et al., 2023) pre-trained on the
VG dataset. We examine how the hyper scene graphs



Table 1: Results of counting the males and females for per-
son in the 10 generated images for each of the six hyper
scene graphs. If the image was too dark or blurred to de-
termine the gender, it is assumed to be indistinguishable.
Examples (a)-(c) correspond to Examples (a)’-(c)’, respec-
tively. Each hyper scene graph of the formers has three per-
sons while all of persons are replaced with women in the
hyper scene graphs of the latters.

male female indistinguishable
Example (a) 19 10 1
Example (b) 25 2 3
Example (c) 30 0 0
Example (a)’ 0 27 3
Example (b)’ 3 27 0
Example (c)’ 4 26 0

affect the gender of the persons in the generated im-
ages by counting the number of males and females.
Examples and the results are shown in Figure 8 and
Table 1, respectively.

Hyper scene graph in (a) has no object with gen-
der bias; however, 19 males were generated, while
only 10 females were generated. These results indi-
cate that LayoutDiffusion has learned a prejudice in
VG dataset (Krishna et al., 2017), in which males are
more common than females as persons. In example
(b), we specify that three persons are wearing tie in
the generated image and obtained 25 males and 2 fe-
males. In the same way, we specify that three persons
are wearing glove in example (c) in the generated im-
age. We obtained 30 males and 0 female. These re-
sults indicate that LayoutDiffusion has learned a prej-
udice in VG dataset (Krishna et al., 2017), in which tie
and glove are more common for males than females.

Though OA-hsg2im does not handle this gender
bias, the addition of the woman images to the training
sets will alleviate this bias. Also, we confirmed that
the images of the woman are properly generated with
the change of the object label from person to woman
in Example (a)’-(c)’ in Figure 8 and Table 1.

7 EXPERIMENTS

7.1 Dataset

We use the COCO Stuff (COCO) (Caesar et al.,
2018) and Visual Genome (VG) (Krishna et al., 2017)
datasets with additional trinomial hyperedges as in
previous works (Johnson et al., 2018; Miyake et al.,
2023; Miyake et al., ). These datasets are the same
as the our recent work (Miyake et al., ), except for
the test sets. In this paper, we use only samples that
include hyperedges as test sets.

Figure 7: Numbers of three types of trinomial relations in
each dataset.

The COCO (Caesar et al., 2018) consists of im-
ages, objects, their bounding boxes, and segmen-
tation masks. Since the COCO dataset does not
contain data on relations between objects, we con-
struct a hyper scene graph by adding nine rela-
tions left of, right of, above, below, inside, sur-
rounding between, stacked, and nested based on the
bounding boxes. Based on the coditions in Sec-
tion 3.2.1, the three types of relations, i.e., between,
stacked and nested, are added as trinomial hyper-
edges in hsg2im. The conditions in adding edges
(vi, left of,v j) and (v j, right of,vi) are the same as hy-
peredge (vi,between,v j,vk). Similarly, the conditions
in adding edges (vi,above,v j) and (v j,below,vi) are
the same as hyperedge (vi,stacked,v j,vk) in which
vk is ignored, and the conditions in adding edges
(vi,surrounding,v j) and (v j, inside,vi) are the same
as hyperedge (vi,nested,v j,vk). The number of these
types of relations are shown in Figure 7. There are
40,000 training images and 5,000 validation images.
Since the COCO dataset has no test set, we divide the
validation set into a new validation set and a test set
and exclude the samples whose scene does not have
a hyperedges from the test set. As a result, we ob-
tain 24,972 training, 1,667 validation, and 131 test
images.

The VG (Krishna et al., 2017) version 1.4 dataset,
containing 108,077 images annotated with scene
graphs, consists of images, objects, their bounding
boxes, and the binomial relations between the ob-
jects. In the entire dataset, we use objects and rela-
tions which appear more than 2,000 and 500 times,
respectively, following (Johnson et al., 2018). Sam-
ples with less than 2 objects and more than 31 objects
were ignored. We exclude the samples whose scene
does not have a hyperedge from the test set as in the
COCO. As the result, we use 62,602 training, 5,069
validation, and 755 test images. For the VG, we add
the trinomial relations as in the COCO. The number



of these types of relations are shown in Figure 7.

7.2 Implementation Details

We train OA-hsg2im on each of the COCO and Visual
Genome datasets, respectively. We use the optimizer
Adam (Kingma and Ba, 2015) with the epoch upper
bound (= 3 ∗ 102). We use the number of attention
layer Nl = 12 and the attention head Nh = 12, and set
the dimension of object and relation vectors d = 768.
We use the loss function L defined as follows:

L = wMSE ∗MSE(B, B̂)+wRBL1 ∗LRBL1

+wRBL2 ∗LRBL2, (8)

where MSE means Mean Squared Error and w rep-
resents the weight of each loss. B and B̂ represent a
set of ground truth and generated bounding bounding
boxes, respectively. We use wMSE = 1, wRBL1 = 1,
wRBL2 = 2 ∗ 10−3. LRBL1 and LRBL2 are the losses in
terms of the relative positions between the two objects
connected to the same edge and hyperedge proposed
in our recent work (Miyake et al., ), respectively.

The former penalizes the difference of relative
vectors, which represent the relative position of the
two objects connected to a binomial edge, between
the ground truth and the generated bounding boxes.
The latter penalizes the difference of binary vectors,
which represent larger and smaller relations of spatial
coordinates of the two objects.

Relative box loss function LRBL1 is defined as fol-
lows:

LRBL1 =
1
N

N

∑
i=1

MSE(di, d̂i), (9)

where N is the number of all types of binomial edges
in one batch, and di and d̂i are the relative vectors of
the ground truth and generated bounding boxes, re-
spectively. Here, di is defined by di = bis −bio, where
bis and bio are bounding boxes corresponding to the
initial and terminate vertices of i-th binomial edge,
respectively. For example, when the i-th edge is (cow,
below, sky-other) in the hyper scene graph in Figure
5, bis = bcow and bio = bsky−other.

Relative box loss function LRBL2 is defined as fol-
lows:

LRBL2 =
1
N

N

∑
i=1

BCE(gi, ĝi), (10)

where BCE means the Binary Cross Entropy,
and gi and ĝi represent the 8-dimensional bi-
nary vectors of the ground truth and generated
bounding boxes, respectively. Here, gi is defined
as gi = (I(xsi0 < xoi0), I(xsi1 < xoi0), I(xsi0 <
xoi1), I(xsi1 < xoi1), I(ysi0 < yoi0), I(ysi1 <

yoi0), I(ysi0 < yoi1), I(ysi1 < yoi1)) and ĝi is de-
fined similarly, where I(·) is an indicator function
which returns 1 when the input condition holds and 0
otherwise.

7.3 Results and Discussion

We evaluate OA-hsg2im by comparing it with hsg2im
(Miyake et al., ) and hsg2im∗. hsg2im∗ is the model
trained with the same conditions of OA-hsg2im ex-
cept for the object attention layers. These models use
the same loss function as Eq. (8). In order to align
the conditions with OA-hsg2im, we use LayoutDiffu-
sion (Zheng et al., 2023) instead of Layout2img (He
et al., 2021) as a pre-trained layout-to-image model
in hsg2im. The quantitative results on the COCO and
the VG are shown in Table 2 (a) and (b), respectively.
We can see that OA-hsg2im shows high PTO scores
more consistently than the other models and all mod-
els show low AoO scores in both datasets. Also, PTO
and AoO scores tend to be better on the COCO than
the VG. The reason would lie in the number of the
types of the relations, i.e., the COCO has nine types
of relations and the VG has 48 types of relations. If
the number of the types is smaller, models can capture
the relations more easily.

In terms of IS, hsg2im∗ and hsg2im perform better
than OA-hsg2im on the COCO and the VG, respec-
tively. We obtain two FID for each model, i.e., the
distance between the sets of the ground truth image
and the generated images of each model and the dis-
tance between the sets of the generated images from
the ground truth layout and each model. In terms of
the former FID, OA-hsg2im shows better scores than
hsg2im∗ on both datasets. As for the latter FID, the
images generated from the same hyper scene graph
have the same atmospheres because the seed values
are fixed. In terms of the latter FID, OA-hsg2im
shows better scores on the COCO dataset and slightly
worse scores on the VG dataset. These results show
that OA-hsg2im generates more natural and consis-
tent layouts and images.

Next, we qualitatively evaluate the generated im-
ages. Figures 9, 10 show the generated images of
hsg2im (Miyake et al., ) and OA-hsg2im, on the
COCO and the VG datasets, respectively. In the ex-
ample (b) in Figure 9, the hyper scene graph has ten
objects. In the layout generated by hsg2im (Miyake
et al., ), the objects are not arranged naturally and
consistently. In the example of (b), many objects, i.e.,
floor-wood (red box), table (purple) and spoon (pur-
ple), and bowl (red), overlap each other in the middle
center, and they cannot be seen in the generated im-
age of hsg2im. On the other hand, floor-wood (red),



table (purple), spoon (purple) are arranged naturally
in the layout generated by OA-hsg2im, and two per-
sons do not overlap each other. In the example of
(f) in Figure 10, the hyper scene graph has a hyper-
edge woman (light blue) - between - woman (pur-
ple) → person (red); however, woman (light blue) and
woman (purple) overlap each other in the layout gen-
erated by hsg2im, and we cannot see woman (light
blue) clearly. Conversely, they do not overlap at all in
the layout generated by OA-hsg2im, and we can see
woman (light blue). Thus, we can also confirm the
effectiveness of OA-hsg2im in generating natural and
consistent layouts and images.

8 CONCLUSIONS

In this paper, we have proposed a hyper-scene-
graph-to-image model Object Attention hsg2im (OA-
hsg2im) with object attention layers, which is an ex-
tension of hsg2im (Miyake et al., ). In addition, we
use a pre-trained layout-to-image model LayoutDiffu-
sion (Zheng et al., 2023) as an auxiliary model to gen-
erate more high-resolution images. The object atten-
tion layers convert object vectors so that they attend
to other objects relevant to themselves, regardless of
the distance between them in a scene graph, which
allows OA-hsg2im generate more natural and consis-
tent images with the input. Therefore, OA-hsg2im
can alleviate the problem of hsg2im, i.e., the unnat-
ural layouts for the complex situations, which is our
main contribution. The results in terms of PTO and
FID show that OA-hsg2im has succeeded in improv-
ing the consistency and naturalness of the generated
image.

However, we see that the generated images are
less natural than the ground truth images. Trans-
former (Vaswani et al., 2017) has two types of at-
tentions, i.e. the self-attention, which is employed in
OA-hsg2im, and the source-target attention. The lat-
ter attention uses different vectors for obtaining Key
and Query, and is thus useful for combining two fea-
ture spaces, e.g., English and Spanish feature spaces,
in the natural language translation tasks. We can
use this attention in the image generation from hyper
scene graphs for combining the object vector space
and the object bounding box spaces, which would
make the models learn the complex positional rela-
tion between objects and improve the naturalness of
the generated layouts. We believe that this is an inter-
esting direction for our future work.
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Figure 8: Examples of hyper scene graphs, layouts, and images in the investigation of prejudice about genders in LayoutD-
iffusion (Zheng et al., 2023). We show three generated images for each hyper scene graph. Examples (a)-(c) correspond to
Examples (a)’-(c)’, respectively. Each hyper scene graph of the formers has three persons while all of persons are replaced
with women in the hyper scene graphs of the latters.
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Figure 9: Comparison of images generated by hsg2im (Miyake et al., ) and OA-hsg2im on the COCO datasets.
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Figure 10: Comparison of images generated by hsg2im (Miyake et al., ) and OA-hsg2im on the VG datasets.


