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Abstract. In this paper, we propose a data index structure which is
constructed by a small autonomous mobile robot so that it manages mil-
lions of subimages it takes during a navigation of dozens of minutes. The
subimages are managed according to a similarity measure between a pair
of subimages, which is based on a method for quantizing HSV colors. The
data index structure has been inspired by the CF tree of BIRCH, which
is an early work in data squashing, though care and inventions were nec-
essary as the bins of HSV colors are highly correlated. We also propose
an application for peculiar subimage detection by the robot, which ex-
ploits the data index structures for the current image and another one
for all images in its navigation. Experiments conducted in a private office
of about 25m2 proved the feasibility of the data index structure and the
effectiveness of the peculiar subimage detection.

1 Introduction

An autonomous mobile robot is capable of moving around in its environment
based on its own reasoning. Various industries employ autonomous mobile robots
in practice and in recent years even consumers use them, mainly for enter-
tainment and household. The success of the DARPA Urban Challenge [9], in
which six autonomous vehicles completed a complex course under the presence
of human-driven cars and obstacles, is a clear evidence of the utility of such a
robot.

The significance of machine learning and data mining by an autonomous
mobile robot in real time is obvious, as they enable such a robot to learn and
discover in an environment where communication to a central server is pro-
hibitive or problematic. A challenging task is to realize them with a reasonable
cost by a relatively small robot. These constraints are from consumers’ demands,
especially when such a robot is intended to operate at home or in an office.

With the recent dramatical progress of low-cost USB cameras and the micro-
processing units (MPUs) which may be mounted on a small robot, the cost for
such a robot to process a large number of relatively high resolution images is now
affordable. Color information has been extensively studied due to its importance
to humans, who are likely to settle the tasks of machine learning and data mining
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Fig. 1. (Left) Our autonomous mobile robot. (Middle) Example of images taken by
the robot. Note the thin green line under the shelf. (Right) Another example. Note
the blue light at upper left window, which was unnoticed with more than 7500 images
taken in this run.

for autonomous mobile robots. A color quantization (discretization) of subimages
which is natural to humans is essential to such a robot as it allows a human
interpretable processing of images in a reasonable time under the aforementioned
constraints. It should be noted that the quantization must be adaptive to the
environment as color information is sensitive to the illumination condition.

Data squashing is a method to leverage the existing machine learning and
statistical modeling methods by scaling down the data [2]. It consists of three
phases: grouping similar data, computing low-order moments of each group, and
generating pseudo data that accurately reproduce the moments. BIRCH [10]
is an early work of data squashing for clustering. As we will explain later, it
employs the CF (clustering feature) vector, which consists of the number and
the first and second moments of examples, as the condensed representation of
data. The CF vectors are managed by the CF tree, which is a height-balanced
tree.

In this paper, we modify the notions of the CF vector and the CF tree for color
quantization of subimages by an autonomous robot. Compared to unsupervised
data stream mining methods, e.g., [4], those based on a mixture of probability
distributions, e.g., [7], and the work based on the spectral hashing [8], the use
of the data index structure enables us a comprehensible understanding of the
observations and detections of specific subimages. The feasibility of data squash-
ing and its application to peculiar subimage detection are demonstrated through
preliminary experiments.

2 Mobile Robot Platform

We have been working on machine learning and data mining for physical robots
for about four years. Figure 1 left shows one of our autonomous mobile robots,
which we constructed from components and use as the platform of this study. Its
length, width, height, and cost are approximately 22cm, 18cm, 18cm, and 114K
JPY, respectively. It captures images, measures distances, and detects physical
contacts with its 2 USB cameras, 8 infrared sensors, and 3 pairs of touch sensors,
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respectively. Two MPUs, a PandaBoard and an Arduino, are used for complex
computation and motor control, respectively. The complex computation includes
image processing and data squashing and the motor control is based on the
infrared and touch sensors. The robot moves forward/backward as well as turns
left/right and typically operates for about one hour with fully charged batteries.
The log data is recorded on its 16GB SDHC card.

The PandaBoard has a 1GHz CPU and a 1GB RAM, and uses the 16GB
SDHC card as storage. Note that the specification is equivalent to that of a
CPU of a desktop PC of about a decade ago, which is enough for executing
various data mining algorithms including BIRCH. Arduino is a microcontroller
with a 16 MHz crystal oscillator and a 8KB RAM. The two MPUs are connected
through a USB cable at 115200bps.

The resolution of the USB camera is at most 1280 pixels width and 1024
pixels height, and here we set it at 320 pixels width and 240 pixels height. The
infrared sensor detects an obstacle at a distance approximately from 5cm to
50cm. The velocity of the robot when it is moving forward is about 14cm/s.

3 Subimage Color Quantization Problem

3.1 Definition of the Problem

We define the color quantization problem of subimages, which goes beyond
the color quantization problem by handling collective information. The input
is one or several color images each of which is w pixel width and u pixel
height, the horizontal and vertical lengths w0, u0 of a subimage, and a color
quantization function f which maps a color c of a pixel to a bin f(c), where
f(c) ∈ {1, 2, . . . , K} and K is the number of the quantized colors. For simplicity,
we assume w mod w0 = u mod u0 = 0. Consequently an image consists of wu

w0u0

subimages and a subimage consists of w0u0 pixels.
The output is a function g which maps the set of colors of the pixels in

subimage s to a bin g(s), where g(s) ∈ {1, 2, . . . , L} and L is the number of the
quantized subimage colors. The goodness of g is typically measured through a
specific task such as classification, clustering, and peculiarity detection.

3.2 Color Quantization Methods

Lei et al. proposed a color quantization function f with K = 36 [5], which may
serve as a basis for resolving the subimage color quantization problem3. They
assume the HSV color space, commonly used in computer vision, so a specific
color is a point in a 3-dimensional space4 with axes being hue h (0◦ ≤ h < 360◦),
saturation s (0 ≤ s < 1.0), and value v (0 ≤ v < 1.0).

3 We modified the range and the order of bins in this paper but the methods are
essentially equivalent.

4 Strictly speaking, it forms a torus in the 3D space, i.e., a donut, of which cross-section
is a square of S and V, as H forms a ring of 0◦ ≤ h < 360◦.
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(a) (b)

Fig. 2. Lei’s quantization for hue (a) and for saturation and value (b), where the
horizontal and vertical axes represent s and v (reproduction of a Figure in [5]).

The bins 1 and 8 of the quantized colors correspond to black and white,
respectively, whereas the bins from 2 to 7 correspond to grays. Formally for bin
b (b = 1, 2, . . . , 8), b = 1 iff. 0 ≤ v < 0.2, b = ⌊10(v − 0.2)⌋ + 2 iff. 0.2 ≤ v < 0.8
and 0 ≤ s < 0.2, b = 8 iff. 0.8 ≤ v < 1.0 and 0 ≤ s < 0.2, where iff. represents if
and only if. The black bin 1 corresponds to the region I in Figure 2 (b), where
the horizontal and vertical axes represent s and v. The gray bins (2-7) and the
white bin 8 lie in the region II in the Figure, each corresponding to a rectangle
of height 0.1 (gray) or 0.2 (white) from the bottom to the top.

The remaining bins from 9 to 36 correspond to red, orange, yellow, green,
cyan, blue, and purple, as shown in Figure 2 (a), each of which is divided into 4
bins. Formally, b = 4H + G + 9, where H and G are defined as follows: H = 0
iff. 0 ≤ h < 22 or 330 ≤ h < 360, H = 1 iff. 22 ≤ h < 45, H = 2 iff. 45 ≤ h < 70,
H = 3 iff. 70 ≤ h < 155, H = 4 iff. 155 ≤ h < 186, H = 5 iff. 186 ≤ h < 278,
H = 6 iff. 278 ≤ h < 330, G = 0 iff. 0.65 < s < 1 and 0.7 < v < 1, G = 1 iff.
0.2 ≤ s ≤ 0.65 and 0.7 < v < 1, G = 2 iff. 0.65 < s < 1 and 0.2 ≤ v ≤ 0.7,
G = 3 iff. 0.2 ≤ s ≤ 0.65 and 0.2 ≤ v ≤ 0.7. Note that H depends on h as shown
in Figure 2 (a) while each of S and V depends on both s and v as shown in
Figure 2 (b). For the latter, the four rectangles in the region III in Figure 2 (b)
correspond to bins 4H + 9, 4H + 11, 4H + 12, and 4H + 10 from the top right
rectangle in clockwise direction.

Preliminary experiments using the above method gave both good and bad
results. On the one hand, early inspection of the obtained g looked natural to
one of the authors, enabling him to discover peculiar colors which he overlooked
before, e.g., the green line under the shelf in Figure 1 middle, the blue light
at upper left in Figure 1 right. On the other hand, it also returned unnatural
fragmentation of bins of subimage colors concerning the black, white, and the
six gray areas. Unlike Lei et al. who handled also gray-scale images, we handle
only color images so we decided to treat gray as one of other colors. We currently
use the following simplified f : b = 1 iff. 0 ≤ v < 0.2, b = 2 iff. 0.2 ≤ v < 0.8 and
0 ≤ s < 0.2, b = 3 iff. 0.8 ≤ v < 1.0 and 0 ≤ s < 0.2, b = b′ − 5 for b ≥ 4, where
b′ is the bin of Lei’s method. Note that K = 31 for this method.
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3.3 Similarity Degree between two Subimages

As stated so far we are going to resolve the subimage color quantization prob-
lem with an extension of BIRCH. Since BIRCH is a distance-based clustering
method, we need a distance measure between a pair of subimages in terms of
their colors. As stated before a subimage consists of w0u0 pixels and the color
of a pixel is classified into one of 1, 2, . . . , 31 (= K) bins. Since we consider color
information only, we regard a subimage as a bag of K = 31 bins.

The distance between two examples in BIRCH cannot be used as the distance
between two subimages. For the latter, it does not make sense to consider the
31 bins independently, as the bins are highly correlated. It also does not make
sense to consider the distance between completely different colors, which would
result in an unnatural distance which is dominated by the pairs of frequencies
of completely different colors. Due to this reason, conventional measures such
as earth mover’s distance are inadequate for our problem. Thus instead of a
distance measure we devise a similarity degree between two subimages which
considers similar colors only.

It is common in data mining to use several weights in a domain-specific dis-
tance measure. Following such an approach would end in a similarity degree
which uses weight(s) for differentiating the same bins and similar bins. Our pre-
liminary studies show that this approach works for resolving the subimage color
quantization problem but makes parameter settings under various conditions in
the application task intractable.

The ratio of the pixels with the same color bin has a sound interpretation and,
as w0, u0 are fixed, has the same range of 0 - 1, for any pair of subimages. It corre-
sponds to, for our case, the Jaccard coefficient, which has been successfully used
in various problems. Let min(a, b) returns the smaller one of a and b. Currently
the degree σ(r1, r2) of similarity between two subimages r1 and r2 is defined

as σ(r1, r2) =
∑31

i=1 min(ci(r
′
1), ci(r

′
2)), where r′ and ci(r

′) represent a smoothed
subimage of r and the frequency of the ith bin in r′, respectively. It is common to
smooth a histogram to cope with noise. A smoothed image r′ of r is obtained as
follows. For black, gray, and white bins, i.e., j = 1, 2, 3, c1(r

′) = 3
4c1(r)+ 1

4c2(r),
c2(r

′) = 1
2 c2(r) + 1

4 (c1(r) + c3(r)), c3(r
′) = 3

4c3(r) + 1
4c2(r). For other bins, i.e.,

j = 4, 5, . . . , 31, cj(r
′) = 1

2cj(r) +
∑

j′ belongs to the same hue of j,j′ 6=j
1
6cj′ (r).

4 Data Squashing-based Quantization

4.1 BIRCH

BIRCH [10], which is a distance-based clustering method for a huge data set,
may be viewed as an early work of data squashing. It groups similar examples
by building a data index structure called a CF tree, which have CF vectors, i.e.,
low-order moments of the groups, at the leaves. The CF vectors correspond to
the pseudo data that accurately reproduce the moments and clustering them is
done highly efficiently as the number of CF vectors is drastically smaller than
the number of examples in the data set.
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For a set U of examples U = {x1, x2, . . . , xN}, the CF vector γ(U) is a

triplet γ(U) = (N,
∑N

i=1 xi,
∑N

i=1 ‖xi‖
2). It is straightforward to show that, for

two sets U1, U2 of examples, various extended distance measures between U1

and U2 may be calculated with γ(U1) and γ(U2) only. Such extended distance

measures include the average inter-cluster distance
(

P

i∈U1

P

j∈U2
d(xi,xj)

|U1||U2|

)

1

2

and

the average intra-cluster distance
(

P

i∈U1∪U2

P

j∈U1∪U2
d(xi,xj)

(|U1|+|U2|)(|U1|+|U2|−1)

)

1

2

, where d(xi, xj)

represents the Euclidean distance between xi and xj. Note that the CF vector
satisfies additivity, i.e., for two sets U1, U2 of examples, γ(U1 + U2) = γ(U1) +
γ(U2). This characteristics assures that when new examples are added to a CF
vector, the CF vector may be updated with the new examples only, which enables
us to safely forget the original examples in data squashing.

CF tree is a height-balanced tree with three parameters: branching factor
βinternal for an internal node, branching factor βleaf for a leaf, and the diameter
θ of the CF vectors in a leaf. Let m be the number of nodes in the tree. When
θ is small and the number of entries in a leaf is a constant, CF tree allows an
efficient execution of member and insert operations in O(log m), which is same
with the B+ tree. Moreover, as the membership of an example to a leaf may be
judged with the example and the CF vector with threshold θ, an approximate
membership query is executed in O(log m). Entries in leaves form a bidirectional
linked list as each of them has pointers to its predecessor and successor, allowing
the listing operation of the entries in O(m). BIRCH has several sophisticated
functions such as an on-line updating of θ, a reconstruction algorithm of the CF
tree for outlier filtering, and an optional refinement phase after clustering.

4.2 Extension to Color Sub-images

Three problems hinder an extension of the CF vector for our problem: metric
space, hardware constraints, and data dependency. While the CF vector assumes
an instance in the Euclidean space, our subimages lie in a metric space, i.e., each
subimage is a vector of length 31 of which dimensions are highly correlated and
thus only their similarity degrees are available for clustering. The computation
should be done in real time with a reasonable cost by a relatively small robot.
Last but not least, the pictures taken by the mobile robot are typically all
dependent, as they are snapshots taken at close locations in the environment.
The controller which decides the navigation and the image collection of the robot
plays a decisive role in the data squashing.

For the first problem, we omitted the second moment ‖xi‖
2 in the CF vector,

though we do not deny the utility of a kind of set variance in our application. As
the result, our concise representations for a set of subimages essentially consists
of the number of subimages and their center of gravity5. Note that the omission
is also favorable to the second problem.

5 We have adopted this representation for a set of high dimensional points [3] and a
set of time sequences [6] for other problems.
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Table 1. Pseudo code of the algorithm for building our data index structure

1 procedure makeIndex(Image img, NODE root, LIST initial)
2 for i = 0 to u0

3 for j = 0 to w0

4 histogram = getHistogram(img, i, j);
5 root = insertTree(histogram, root);
6 if root.type == EXTERNAL then

7 initial = root;
8 end if

9 end for

10 end for

For the second problem, we simplified the CF tree and operations to it, such
as βinternal = βleaf = β, replacement of a bidirectional linked list with a linked
list, and omission of the sophisticated functions. The node of our data index
structure includes the concise representation and the type of the node, which is
EXTERNAL for a leaf and INTERNAL for an internal node. A leaf also includes
a pointer to its successor leaf while an internal node also includes the number of
its children up to β and pointers to the children.

For the last problem, we implemented several controllers for both the Pand-
aBoard and the Arduino. For the former, we initially tested a controller P1 which
iterates a 360◦ turn and a 3-step forward move. In each turn, 20 pictures are
taken to 20 directions. For the latter, we adopted a controller A1 which makes a
180◦ turn on detecting either a close obstacle by an infrared sensor or a physical
contact to an obstacle by a touch sensor. With the combination of the controllers
P1+A1, the robot often stays in a particular area, roughly going back and forth
on an interval. The controller of the Arduino was first modified to A2 so that
the robot moves toward the most open direction indicated by the IR sensors,
and then to A3 the closest open direction. The controller of the PandaBoard
was modified to P2 so that it iterates a 3-directional oscillation and a 10-step
forward move, i.e., L2R4L2A10, where L, R, and A represent a left turn, a right
turn, and a forward move, respectively. The most recent combination of P2+A3
works fine in both a large office of more than 100m2 and a private office of about
25m2. Even for the latter, a stacking rarely occurs in 10 minutes.

4.3 Implementation of our Data Index Structure

Tables 1 shows the pseudo code of the algorithm for building our data index
structure6. It first obtains a histogram histogram whose coordinate of the top
left corner is (j ∗w0 +1, i ∗u0 +1). The data index structure root is constructed
with function insertTree, which we explain later. Lines 6, 7 are for setting initial
to be the first cell of the list for the leaves.

6 Note that in the pseudo code we simplified the descriptions of pointers and pointers
to pointers for brevity.
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Table 2. Pseudo code of the function insertTree

1 function insertTree(keytype x, NODE root)
2 expanded == FALSE;
3 if root == NULL then

4 root.key = x; root.numex = 1;
5 root.type = EXTERNAL; root.next = NULL;
6 else

7 root = ins(x, root, secroot, expanded);
8 if expanded == TRUE then

9 newroot.child[0] = root;
10 newroot.child[1] = secroot;
11 root.type = INTERNAL;
12 updateNodeKeys(newroot, root.key, root.numex, secroot.key, secroot.numex);
13 end if

14 end if

15 return root;

Table 2 shows the pseudo code of the function insertTree, where key and
numex of a node represent the key and the number of examples, respectively.
They form the concise representation stored in the node. Given a new key x
to be inserted, lines 3-5 are for constructing a new leaf while lines 6-13 are for
inserting x to an internal node. The function ins, which is explained later, do
most of the task. If it returns expanded == TRUE, a new internal node secroot
is constructed, which becomes a younger sister of root. UpdateNodeKeys(p, key1,
n1, key2, n2,) in Line 11 updates the concise representation of p with p.exnum =
n1 + n2 and p.key = n1∗key1+n2∗key2

n1+n2

.
Table 3 shows the pseudo code of the function ins. Lines 3,4 handle the case

when x is inserted to a leafnode p, where φ1 is used as a threshold to judge an
absorption of x into p. On the other hand, lines 5-9 handle the case when a new
leafnode secondary, containing x only, is constructed. Lines 10 - 25 handle the
case when x is allocated to an internal node p. Locate function in line 11 locates
the child p.child[pos+1] to which x is allocated with a recursive call of ins. Lines
13-14 handle the case when no new sister child is constructed for p while lines
15-24 handle the case when a new sister child is created.

5 Peculiarity Detection by the Mobile Robot

We believe that the practical goodness of a data index structure can be evaluated
only in the context of its application. As such an application, we consider peculiar
subimage detection in this paper and propose a solution.

Intuitively, a peculiar subimage is a subimage which has a very different
HSV histogram compared to other subimages that the robot observed. With
this intuition we decided to build two data index structures: a lifelong one tlong
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Table 3. Pseudo code of the function ins

1 procedure ins(keytype x, NODE p, secondary, boolean expanded)
2 if p.nodetype == EXTERNAL then

3 if similarity(x, p.key) > φ1 then

4 updateNodeKeys(p, p.key, p.numex, x, 1);
5 else

6 secondary.key = x; secondary.numex = 1;
7 secondary.type = EXTERNAL;
8 p.next = secondary;
9 end if

10 else

11 pos = locate(x, p);
12 p.child[pos] = ins(x, p.child[pos], sec, exp);
13 if exp == FALSE then

14 updateNodeKeys(p, p.key, p.numex, x, 1);
15 else

16 if p has less than β children
17 insert sec as p.child[p + 1];
18 updateNodeKeys(p, p.key, p.numex, sec.key, sec.numex);
19 end if

20 else

21 split the β children of p and sec to p and secondary in appropriate order;
22 update the keys of p and secondary with updateNodeKeys;
23 expanded = TRUE;
24 end if

25 end if

26 end if

27 return p;

from all images and the one tcurrent from the recent images after a learning phase
with specified length nlearning. Let φ2 be a user-supplied threshold. A peculiar
subimage r is defined as r which satisfies arg maxr′ σ(r.key, r′.key) ≤ φ2, where
r.key is the key of tcurrent and r′ is a subimage in either tlong or the list peculiar
of peculiar subimages7. It should be noted that the robot, once having obtained
all peculiar subimages from tcurrent, must identify their corresponding pixels in
the current image to exploit its detection.

The upper half of Table 4 shows the pseudo code of our algorithm for de-
tecting peculiar subimages. It consists of one do until loop, in which function
makeIndex is called twice to construct tlong and tcurrent. The latter is constructed
from the nlearning-th loop, as we think the robot needs some time to investigate
its environment. It is followed by the peculiar subimage detection by peculiar-
tyDetection and the identification of the pixels in the img by spotSubimages,
the former of which is explained below. SpotSubimages displays the subimages

7 We denote key in function σ explicitly from here.
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Table 4. Pseudo code of the algorithm for detecting peculiar subimages

1 procedure peculiarDetection(Image img, NODE tcurrent, tlong, LIST slist, llist)
2 i = 0;
3 do

4 obtainImage(img); i++;
5 if i > nlearning

6 makeIndex(img, tcurrent, stlist);
7 if peculiartyDetection(slist, tlong, peculiar, pos) == TRUE
8 spotSubimages(img, peculiar, pos);
9 end if

10 end if

11 makeIndex(img, tlong, llist);
12 until the termination condition is met;

13 function peculiarityDetection(LIST list, NODE tree, LIST peculiar, pos)
14 tmp = list; found = FALSE;
15 while tmp 6= NULL
16 if simNodeTree(tmp, tree) ≤ φ2 then

17 if evalPeculiarty(tmp, peculiar) ≤ φ2 then

18 store tmp.key as peculiar in peculiar;
19 if found == FALSE
20 pos = peculiar; found = TRUE;
21 end if

22 end if

23 end if

24 tmp = tmp.next;
25 end while

26 return found;

r in img which satisfy σ(r.key, r′.key) > φ1, where r′ is a subimage stored in
peculiar.

The lower half of Table 4 shows the pseudo code of the algorithm for pecu-
liarityDetection. Note that the dissimilarity conditions are inspected in lines 17
and 18. As stated before the similarity degree between the candidate subimage
tmp and any subimage in tlong or the list peculiar of peculiar subimages found
so far should be at most φ2. The pointer pos is used to record the end of the
peculiar subimages found in tcurrent and indicates the end of the inspection in
function spotSubimages.

6 Preliminary Experiments

6.1 Construction of Data Index Structures

We have tested our makeIndex function onboard of the physical robot. It corre-
sponds to executing peculiarityDetection in Table 4 with the termination condi-
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Fig. 3. Numbers of the leaves of the data index structure in terms of the number of
images.

tion being 1000 images and nlearning = 100. The field of the experiments is the
personal office of about 25m2, which is filled with three desks, three chairs, one
big shelf, one locker combined shelf, one 42inch plasma display, one refrigerator,
three small personal shelves, four PCs, one carton box, and one electric fan on
the floor. We had to put thirteen obstacles, most of which are paper boxes so
that the robot is not trapped by an arch-shape legs of furniture to which neither
the infrared sensor nor the touch sensor is effective. Elimination of the flaw of
our robot will be investigated in the future.

The objective of the experiment is to demonstrate the feasibility of our data
index structure and to investigate an appropriate value for nlearning for the pecu-
liar subimage detection. The similarity threshold for judging the absorption of a
subimage to a leaf is set to φ1 = 10, 20, . . . , 60. For each φ1, the robot constructs
the data index structure for 1000 images, which lasted about 10 minutes. We
also tested the robot until the extinction of the batteries8 for about 50 minutes
several times and observed no problem.

The subimage is a square with edge length w0 = u0 = 8 pixels and the
branching factor of the height-balanced tree which corresponds to the data index
structure is β = 5. Therefore an image consists of 1200 subimages and the
reported data index structure is generated from 1.2 million of subimages. Note
that we also tested w0 = u0 = 4 several times and found no problem. In the
extreme case, we estimate that the data index structure was constructed from
about 80 million of subimages.

Figure 3 shows the numbers of leaves in terms of the number of images
processed by the robot. The final number of leaves roughly increases by 10 times
as φ1 increases by 10. A common trend is the drastic increase of the number

8 The testing method is not recommended as it may destruct the file system in the
SDHC card.
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Table 5. Statistics of the obtained data index structures, where Height, Num; Max,
Average, and Min represent the height of the tree, the number of the leaves; and the
maximum, the average, and the minimum numbers of examples in a leaf, respectively.

φ1 Height Num Max Average Min

10 2 17 701K 705.9K 317
20 3 75 606K 16.0K 1
30 5 360 539K 3.3K 1
40 6 4.3K 496K 281 1
50 8 41.9K 458K 28.7 1
60 10 414.2K 268K 2.9 1
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    72490 <B:0.11, G:0.21, b2:0.08, b4:0.48>
    3193 <G:0.16, g4:0.10, c2:0.07, c4:0.39, b2:0.06, b4:0.12>

  44265 <G:0.19, r4:0.15, o4:0.16, y4:0.24>
    13420 <G:0.16, r4:0.10, o2:0.06, o3:0.09, o4:0.37, y4:0.09>
    14553 <G:0.27, o4:0.06, y4:0.54>
    5259 <B:0.05, G:0.24, W:0.15, r4:0.16, o4:0.08, y2:0.05, y4:0.09>
    3221 <G:0.27, y4:0.30, g4:0.30>
    7812 <B:0.05, r3:0.10, r4:0.54, o3:0.06, o4:0.08, p4:0.08>

Fig. 4. Data index structure constructed by the robot for φ1 = 10. Colors less than 5
% were omitted from display.

of the leaves until around 100 images then a steady increase until 1000 images.
This trend shows that the first 100 images were necessary to obtain a relatively
accurate data index structure and supports nlearning = 100.

Table 5 shows statistics of the obtained data index structures. ¿From the
Table, we see a steady and then a drastic increase of the number of leaves, which
is reflected to the increase of the height of the tree and that in the decrease
of the average number of examples in a leaf. Note that the number of leaves is
at least 2⌈β/2⌉h−1 and at most βh, where h represents the height of the tree.
We see that the maximum number of examples in a leaf is not so drastically
influenced by φ1, which makes sense as the most frequent subimage color (in our
case almost all gray) is stable against φ1. The minimum number of examples in
a leaf is 1 except φ1 = 10, indicating that loners exist from φ1 = 20.
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(a) (b)

Fig. 5. (a) HSV image taken by the robot which contains the first kind of abnormal
subimage, which is indicated by a square. (b) RGB image of (a). The red mark below
corresponds to the peculiarity detected by the robot.

Figure 4 shows the data index structure constructed by the robot with φ1 =
10, where a line represents the number of subimages followed by the center of
gravity in < >. B, G, W, r, o, y, g, c, b, and p represent black, gray, white,
red, orange, yellow, green, cyan, blue, and purple, respectively. The digit after a
color is the identifier of the bin in the color, i.e., the region III of the same hue
in Fig. 2 (b), in the order of our color quantization function f . The number after
each bin is the ratio of the bin to the w0u0 = 64 pixels in the subimage. Colors
less than 5 % were omitted from display. Note that the data index structure in
the Figure was chosen due to its small size and is not used in practice due to its
coarseness. As said before, it enables us a comprehensible understanding of the
observations and detections of specific subimages.

6.2 Detection of Peculiar Subimages

We tested our method for detecting peculiar subimages with (φ1, φ2) = (30, 20),
(30, 25), (20, 15). Firstly φ1 = 30 was chosen, as, from the experimental re-
sults in the previous section, we expected that 360 leaves are enough for rep-
resenting subimage colors in the office. Note that φ2 is smaller than φ1 due
to the definition of peculiarity so we chose φ2 = 20, 25. The last condition
(φ1, φ2) = (20, 15) was chosen to see whether any peculiar subimage is detected
under such a coarse model of various subimage colors, i.e., 75 leaves in the data
index structure, and a strict condition of similarity, i.e., subimage r must satisfy
arg maxr′ σ(r.key, r′.key) ≤ 15 for the most approximate subimage r′ in tlong

and in list peculiar.
For the first condition (φ1, φ2) = (30, 20), two kinds of peculiar subimages

were detected, each of which key of the leaf in tcurrent corresponds to <r3: 0.41,
r4: 0.08, o3: 0.06, o4: 0.03, y3: 0.02, y4: 0.17, p3: 0.19, p4: 0.05> and <B: 0.01,
G: 0.12, g4: 0.10, c4: 0.76, b4: 0.02>, respectively. The first kind of abnormal
subimage is indicated by a square in Figure 5 (a). Fig. 5 (b) shows that the red
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(a) (b)

Fig. 6. (a) HSV image taken by the robot which contains the second kind of abnormal
subimage. (b) RGB image of (a). The cyan paper boxes in the left middle corresponds
to the peculiarity detected by the robot.

mark below corresponds to the peculiarity detected by the robot. The second
kind of abnormal subimage is indicated by two squares in Figure 6 (a). Fig. 6 (b)
shows that the cyan paper boxes in the left middle correspond to the peculiarity
detected by the robot.

For the second condition (φ1, φ2) = (30, 25), no peculiar subimage was de-
tected. This result is naturally explained by the fact that the images taken by the
robot are different in each series of the experiments, as its trajectories are differ-
ent. For instance, if the robot encountered the cyan paper box before nlearning,
the box is not recognized as peculiar.

For the last condition (φ1, φ2) = (20, 15), no peculiar subimage was detected,
either. We this time attribute the reason to the coarse model of various colors and
the strict condition of peculiarity. This result suggests that these φ1 and φ2 are
too small, while increasing them by 5-10 allows our robot to detect peculiarities
as shown in the first condition. Though we haven’t confirmed whether all pecu-
liarities were detected, we see that all detected peculiarity in the experiments
were valid.

7 Conclusions and Future Work

In this paper, we have proposed an autonomous mobile robot doing data squash-
ing of HSV subimages of the images it takes by its two cameras during its nav-
igation. With the first proposal, the data index structure, the robot managed
millions of color information taken during its navigation in a personal office for
10 - 50 minutes. With the second proposal, abnormal subimage detection based
on two data index structures, the robot detected objects that we believe it did
not encounter before nlearning.

In another series of work, we found that the choice of parameter values can be
much more important than the choice of a data mining algorithm [1]. The results
of the second experiment provides a persuasive evidence on the importance of
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self-learning of these parameters of its data mining algorithm by the autonomous
robot. Note that a usual data mining process comprises many trials and errors by
the data mining analyst and in our case the trials and errors will be done by the
robot. We think that conventional learning methods such as neural network and
reinforcement learning are inappropriate for the task, as they assume analyses in
much lower levels. Our data index structure may facilitate such trials and errors
because it represents a compact view of the colors in the environment.

Insects are known to possess excellent sensors, which enable them to sur-
vive despite of their simple reasoning capabilities. An excellent quantization of
subimage colors such as ours hopefully provides such a basis for an autonomous
mobile robot to act appropriately without performing a deep reasoning.
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