[English | Japanese]

¼ì “O/Tetsu Matsukawa

‹ãB‘åŠw@ƒVƒXƒeƒ€î•ñ‰ÈŠwŒ¤‹†‰@@î•ñŠw•”–å ’m”\‰ÈŠwuÀ@•‹³
§819-0395@•Ÿ‰ªŒ§•Ÿ‰ªŽs¼‹æŒ³‰ª744
Email: matsukawa (at) inf.kyushu-u.ac.jp
Link: [DBLP][GoogleScholar][‹ãB‘åŠwŒ¤‹†ŽÒî•ñ]

—ª—ð

  • 2014”N9ŒŽ - Œ»Ý@@@@ ‹ãB‘åŠw@ƒVƒXƒeƒ€î•ñ‰ÈŠwŒ¤‹†‰@@î•ñŠw•”–å •‹³
  • 2011”N4ŒŽ - 2014”N9ŒŽ@“Œ‹ž‘åŠw@¶ŽY‹ZpŒ¤‹†Š@“Á”C•‹³
  • 2011”N3ŒŽ@@@@@@@ ’}”g‘åŠw‘åŠw‰@ ƒVƒXƒeƒ€î•ñHŠwŒ¤‹†‰È@”ŽŽmŒãŠú‰Û’ö C—¹@

Œ¤‹†¬‰Ê‚Ì—á


”­•\•¶Œ£

[Journal Article]

  1. Tetsu Matsukawa, Takahiro Okabe, Einoshin Suzuki, Yoichi Sato
    Hierarchical Gaussian Descriptors with Application to Person Re-Identification

    IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol.42, no.9, pp.2179-2194, 2020 [pdf][appendix][matlab code]

  2. Hirofumi Fujita, Tetsu Matsukawa, Einoshin Suzuki
    Detecting Outliers with One-Class Selective Transfer Machine

    Knowledge and Information Systems (KAIS), vol.62, pp.1781-1818, 2020

  3. Kaikai Zhao, Tetsu Matsukawa, Einoshin Suzuki
    Experimental validation for N-ary error correcting output codes for ensemble learning of deep neural networks

    Journal of Intelligent Information Systems
    (JIIS), vol.52, no.2, pp.367-392, 2019

  4. Tetsu Matsukawa, Takio Kurita
    Image representation for generic object recognition using higher-order local autocorrelation features on posterior probability images

    Pattern Recognition
    (PR), vol.45, no.2, pp.707-719, 2012 [pdf]

  5. Tetsu Matsukawa, Takio Kurita
    Extraction of Combined Features from Global/Local Statistics of Visual Words using Relevant Operations

    IEICE Transactions on Information and Systems
    (IEICE Transations D), vol.E93-D, no.10, pp.2870-2874, 2010

[Proceeding]

  1. Jose Alejandro Avellaneda Gonzalez, Tetsu Matsukawa, Einoshin Suzuki
    Cross-Modal Self-Supervised Feature Extraction for Anomaly Detection in Human Monitoring

    in IEEE Nineteenth International Conference on Automation Science and Engineering (CASE2023), 2023

  2. Ryosuke Miyake, Tetsu Matsukawa, Einoshin Suzuki
    Image Generation from Hyper Scene Graphs with Trinomial Hyperedges

    in 18th International Conference on Vision Theory and Application (VISAPP2023), pp.185-195, 2023

  3. Shen Liheng, Tetsu Matsukawa, Einoshin Suzuki
    Detecting Static Anomalies in Human Events with Enhanced Abnormality Scores

    in 19th Pacific Rim International Conference on Artificial Intelligence (PRICAI2022), pp.202-217, 2022

  4. Muhammad Fikko Fadjrimiratno, Kang Zhang, Yusuke Hatae, Tetsu Matsukawa, Einoshin Suzuki
    Detecting Anomalies from Human Activities by an Autonomous Mobile Robot Based on "Fast and Slow" Thinking

    in 16th International Conference on Vision Theory and Application (VISAPP2021), pp.943-953, 2021

  5. Tetsu Matsukawa, Einoshin Suzuki
    Convolutional Feature Transfer via Camera-specific Discrimative Pooling for Person Re-Identification

    in 25th International Conference on Pattern Recognition (ICPR2020), pp.8408-8415, 2021 [pdf]

  6. Kaikai Zhao, Takashi Imaseki, Hiroshi Mouri, Einoshin Suzuki, Tetsu Matsukawa
    From Certain to Uncertain: Toward Optimal Solution for Offline Multiple Object Tracking

    in 25th International Conference on Pattern Recognition (ICPR2020), pp.2506-2513, 2021

  7. Ning Dong, Yusuke Hatae, Muhammad Fikko Fadjrimiratno, Tetsu Matsukawa, Einoshin Suzuki
    Experimental Evaluation of GAN-Based One-Class Anomaly Detection on Office Monitoring

    in 25th International Symposium on Methodologies for Intelligent Systems (ISMIS2020), pp.214-224, 2020

  8. Wenbo Li, Tetsu Matsukawa, Hiroto Saigo, Einoshin Suzuki
    Context-Aware Latent Dirichlet Allocation for Topic Segmentation

    in the 24th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD2020), pp.475-486, 2020

  9. Yusuke Hatae, Qingpu Yang, Muhammad Fikko Fadjrimiratno, Yuanyuan Li, Tetsu Matsukawa, Einoshin Suzuki
    Detecting Anomalous Regions from an Image Based on Deep Captioning

    in 15th International Conference on Vision Theory and Application (VISAPP2020), pp.326-335, 2020 (best poster award)

  10. Yusuke Ohtsubo, Tetsu Matsukawa, Einoshin Suzuki
    Harnessing GAN with Metric Learning for One-Shot Generation on a Fine-Grained Category

    in IEEE International Conference on Tools with Artificial Intelligence (ICTAI2019), pp.915-922, 2019

  11. Tetsu Matsukawa, Einoshin Suzuki
    Kernelized Cross-view Quadratic Discriminant Analysis for Person Re-Identification

    in 16th IAPR Conference on Machine Vision Applications (MVA2019), pp.1-5, 2019 [pdf][matlab code]

  12. Kaikai Zhao, Tetsu Matsukawa, Einoshin Suzuki
    Retraining: A Simple Way to Improve the Ensemble Accuracy of Deep Neural Networks for Image Classification

    in 24th International Conference on Pattern Recognition (ICPR2018), pp.860-867, 2018

  13. Soichiro Oura, Tetsu Matsukawa, Einoshin Suzuki
    Multimodal Deep Neural Network with Image Sequence Features for Video Captioning

    in IEEE International Joint Conference on Neural Networks (IJCNN2018), pp.3296-3302, 2018

  14. Hirofumi Fujita, Tetsu Matsukawa, Einoshin Suzuki
    One-Class Selective Transfer Machine for Personalized Anomalous Facial Expression Detection

    in 13th International Conference on Vision Theory and Application (VISAPP2018), pp.274-283, 2018

  15. Tetsu Matsukawa, Einoshin Suzuki
    Person Re-Identification Using CNN Features Learned from Combination of Attributes

    in 23rd International Conference on Pattern Recognition (ICPR2016), pp.2429-2434, 2016 [pdf][extracted features]

  16. Tetsu Matsukawa, Takahiro Okabe, Einoshin Suzuki, Yoichi Sato
    Hierarchical Gaussian Descriptor for Person Re-Identification

    in IEEE Conference on Computer Vision and Pattern Recognition (CVPR2016), pp.1363-1372, 2016 [pdf][supp][matlab code]

  17. Einoshin Suzuki, Yutaka Deguchi, Tetsu Matsukawa, Shin Ando, Hiroaki Ogata, Masanori Sugimoto
    Toward a Platform for Collecting, Mining, and Utilizing Behavior Data for Detecting Students with Depression Risks

    in 8th annual international conference on PErvasive Technologies Related to Assistive Environments (PETRA2015), pp.26:1-26:8, 2015

  18. Tetsu Matsukawa, Takahiro Okabe, Yoichi Sato
    Person Re-Identification via Discriminative Accumulation of Local Features

    in 22nd International Conference on Pattern Recognition (ICPR2014), pp.3975-3980, 2014 [pdf]

  19. Kimshing Goh, Tetsu Matsukawa, Takahiro Okabe, Yoichi Sato
    Converting Near Infrared Facial Images to Visible Light Images using Skin Pigment Model

    in 13th IAPR Conference on Machine Vision Applications (MVA2013), pp.153-156, 2013 [pdf]

  20. Tetsu Matsukawa, Takahiro Okabe, Yoichi Sato
    Illumination Normalization of Face Images with Cast Shadows

    in 21st International Conference on Pattern Recognition (ICPR2012), pp.1848-1851, 2012 [pdf][matlab code]

  21. Tetsu Matsukawa, Takio Kurita
    Discriminant Appearance Weighting for Action Recognition

    in 1st Asian Conference on Pattern Recognition (ACPR2011), pp.7-10, 2011 [pdf][ext.]

  22. Tetsu Matsukawa, Takio Kurita
    Action recognition using three-way cross correlations feature of local motion attributes

    in 20th International Conference on Pattern Recognition (ICPR2010), pp.1731-1734, 2010 [pdf][c++ code]

  23. Keiji Shimada, Tetsu Matsukawa, Yoshihiro Noguchi, Takio Kurita
    Appearance-Based Smile Intensity Estimation by Cascaded Support Vector Machine

    in 2nd International Workshop on Video Event Categorization, Tagging and Retrieval (VECTaR2010), pp.277-286, 2010

  24. Tetsu Matsukawa, Takio Kurita
    Scene classification using spatial relationship of local posterior probabilities

    in 5th International Conference on Vision Theory and Application (VISAPP2010), volume 2, pp.325-332, 2010 [pdf]

  25. Tetsu Matsukawa, Takio Kurita
    Combined Feature Extraction from Global/Local Statistics of Visual Words using Relevant Operations

    in 16th Japan-Korea Joint Workshop on Frontiers of Computer Vision (FCV2010), pp.492-497, 2010

  26. Yoshito Murayama, Tetsu Matsukawa, Takio Kurita
    Finding a Sub-optimal Combination of the Binary Classifiers for Multi-class Classification Problems

    in 16th Japan-Korea Joint Workshop on Frontiers of Computer Vision (FCV2010), pp.336-341, 2010

  27. Tetsu Matsukawa, Takio Kurita
    Image Classification Using Probability Higher-order Local Auto-Correlations

    in 9th Asian Conference on Computer Vision (ACCV2009), Part III LNCS5996, pp.395-405, 2009 [pdf]

  28. Tetsu Matsukawa, Takio Kurita
    Classification of Spectators' State in Video Sequences by Voting Facial Expressions and Face Directions

    in 11th IAPR Conference on Machine Vision Applications (MVA2009), pp.426-430, 2009 [pdf]

  29. Tetsu Matsukawa, Koji Suzuki, Takio Kurita
    Preliminary Local Features Selection by Support Vector Machine for Bag-of-Features

    in 15th Japan-Korea Joint Workshop on Frontiers of Computer Vision (FCV2009), pp.129-134, 2009

[Presentation in Conference]

  1. Shin Ando, Yusuke Hatae, Muhammad Fikko Fadjrimiratno, Qingpu Yang, Yuanyuan Li, Tetsu Matsukawa, Einoshin Suzuki
    Adversarial Minority-Class Re-Sampling for Imbalanced Sequence Classification

    Tenth International Conference on Pattern Recognition Applications and Methods (ICPRAM2021), p. 41, 2021.

  2. Shin Ando, Yusuke Hatae, Muhammad Fikko Fadjrimiratno, Qingpu Yang, Yuanyuan Li, Tetsu Matsukawa, Einoshin Suzuki
    Visually-Private Scene Classification with Agent-collected Weak-labels

    Thirteenth International Conference on Agents and Artificial Intelligence (ICAART2021), pp. 50-51, 2021.

[Preprint]

  1. Yusuke Ohtsubo, Tetsu Matsukawa, Einoshin Suzuki
    Semi-Supervised Few-Shot Classification with Deep Invertible Hybrid Models

    CoRR abs/2105.10644, (arXiv:2105.10644), 2021.

Žå‚ȍ‘Û‰ï‹c‚̍¸“ÇŽÀÑ

  • NeurIPS: 2023, 2022, 2021, 2020(top10%), 2019(top50%), 2018(top30%), 2017, 2016
  • ICLR: 2023, 2022, 2021, 2020, 2019, 2018
  • CVPR: 2023, 2022, 2021, 2020, 2018
  • ICCV: 2023, 2021, 2017
  • ECCV: 2022, 2020
  • ACCV: 2020, 2018
  • FG: 2023, 2019, 2018, 2017, 2015
  • ICPR: 2022, 2020, 2018, 2016, 2014, 2012
  • ICML: 2022, 2021, 2020(top33%), 2019, 2018
  • ECML/PKDD: 2022, 2021
  • AAAI: 2021, 2020
  • IJCAI: 2020, 2019

‘“àŠw‰ïˆÏˆõ

  • 2016”N5ŒŽ ` “dŽqî•ñ’ʐMŠw‰ï@î•ñƒVƒXƒeƒ€ƒ\ƒTƒGƒeƒB í”C¸“Ljψõ
  • 2017”N5ŒŽ ` 2023”N5ŒŽ “dŽqî•ñ’ʐMŠw‰ïƒpƒ^[ƒ“”FŽ¯EƒƒfƒBƒA—‰ðiPRMUjŒ¤‹†‰ï@ê–åˆÏˆõ
  • 2018”N6ŒŽ ` 2022”N5ŒŽ “dŽqî•ñ’ʐMŠw‰ï@˜a•¶˜_•¶ŽD •ÒWˆÏˆõ
  • 2023”N7ŒŽ@‰æ‘œ‚Ì”FŽ¯E—‰ðƒVƒ“ƒ|ƒWƒEƒ€@ƒGƒŠƒAƒ`ƒFƒA

ÅIXV“ú: 2023”N6ŒŽ16“ú